Part 1: Relations

Definitions

Defn 1: A relation $R : A \rightarrow B$ is defined on a domain A, co-domain B, and a graph that is a subset of the Cartesian product $A \times B$. As a slight abuse of notation, we will often write the relation R as a subset of $A \times B$. A relation on a set A is $R : A \rightarrow A$.

Defn 2: An equivalence relation is a relation that is reflexive, symmetric, and transitive.

Defn 4: A relation R on A is reflexive if $\forall a \in A$, $(a, a) \in R$.

Defn 5: A relation R on A is symmetric if $\forall (a, b) \in R$, $(b, a) \in R$. An equivalent definition is that a relation is not symmetric if $\exists (a, b) \in R$ such that $(b, a) \notin R$.

Defn 6: A relation R on A is antisymmetric if $\forall a, b \in A$, $(a, b) \in R$ and $(b, a) \in R$ implies that $a = b$.

Defn 7: A relation R on A is transitive if $\forall (a, b), (b, c) \in R$, $(a, c) \in R$. An equivalent definition is that a relation is not transitive if $\exists (a, b), (b, c) \in R$ such that $(a, c) \notin R$.

Defn 8: Let R be an equivalence relation on A. Then, the equivalence class of $a \in A$, denoted $[a]_R$, is $\{ x \in A \mid (a, x) \in R \}$. That is, $[a]_R$ is all of the elements to which a is related.

What is the point of an equivalence relation, anyway?

What does it mean for two things to be equal? It can depend on context. For example, you probably generally think of the numbers 2 and 4 as not being equal. However, maybe I want to consider the numbers 2 and 4 to be equal in some contexts because they are both even. We could be in a situation where we only want there to be two kinds of things: even things and odd things. We don’t care about anything else like how big or how small the thing is.

An equivalence relation allows us to specify what things in the world are equal to each other, and what things aren’t.

An equivalence relation R splits up our world into categories, or equivalence classes. In a given equivalence class, all things within the class are things we consider equal,
or equivalent, in the context of R.

For instance, the equivalence relation $R = \{(x, y) \mid x \mod 2 = y \mod 2\}$, for all $x, y \in \mathbb{Z}$, divides the world into two categories: the odd and even numbers.

We call the way the equivalence relation splits up our world a partition. A little more formally, a partition of a set A is a list of subsets B_1, \ldots, B_k of A such that every element of A is in some subset B_i (exhaustive), but no two subsets share an element (mutually exclusive).

![One possible partition of some set A, where the dots in the square are distinct elements of A]

Task 1

1. Consider the set $A = \{1, 2, 3\}$. In the following questions, all relations are on A. It may be helpful to draw out a diagram of each relation.

 a. $R = A \times A$. List out the elements of R. Is R an equivalence relation? If so, state its equivalence class(es).

 b. $R = \{(1, 2), (2, 1)\}$. Is this relation *transitive*?

 c. $R = \{(1, 2), (2, 1), (2, 2), (1, 1)\}$. Is this relation reflexive? Symmetric? Transitive?
d. If the relation in question iii is not an equivalence relation, can you add one pair to it and make it an equivalence relation? Write the equivalence classes of the new relation.

2. Let $A = \{1, 2\}$ and answer to the following questions.

 a. What is the equivalence relation on A with the smallest number of equivalence classes possible?

 b. What is the equivalence relation on A with the largest number of equivalence classes possible?

 c. Is $R_0 = \{}$ a relation on A?

 d. Is R_0 symmetric? Is it antisymmetric? Why or why not?

 e. Is R_0 transitive? Why or why not?
f. R_0 is not an equivalence relation. Why?

3. Suppose R is an equivalence relation on S, and $R = \emptyset$. What is S?

4. Consider the set B of all students at Brown. For each of the following relations on B, state whether they are reflexive, symmetric, antisymmetric, transitive, or some combination of them. If it is an equivalence relation, then determine the equivalence classes of the relation.

 a. Two students are related if they have the same astrology sign.

 b. s_1 and s_2 are students and $(s_1, s_2) \in R$ if s_1 is younger than or the exact same age as s_2. (You can assume no students were born at the exact same time.)
c. Two students are related if they are studying anthropology.

d. Two students are related if they go to Brown.

Checkpoint 1 — Call a TA over!
Part 2: Functions

Definitions

As a reminder:

Defn 1: A relation \(R : X \to Y \) is a function if for every \(x \) in the domain \(X \), \(x \) is mapped to one and only one \(y \) in \(Y \), the codomain. Note that in the book this is called a total function, and function refers to a partial function, where for every \(x \) in the domain \(X \), \(x \) is mapped to zero or one \(y \) in the codomain \(Y \). In this class, we will use function to mean total function and partial function to mean partial function.

Defn 2: The range of a function \(f \) consists of all members of the codomain of \(f \) that are mapped to by some member of the domain of \(f \). It is the image of the domain.

Defn 3: \(f : X \to Y \) is injective (one-to-one) if, for every \(y \in Y \), there is at most one \(x \in X \) such that \(f(x) = y \). Equivalently, for any \(x, y \in Y \) we have \(f(x) = f(y) \implies x = y \), and you can also use its contrapositive \(x_1 \neq x_2 \implies f(x_1) \neq f(x_2) \).

Defn 4: \(f : X \to Y \) is surjective (onto) if, for every \(y \in Y \), there is at least one \(x \in X \) such that \(f(x) = y \). For surjective functions, the range is equal to co-domain.

Defn 5: \(f : X \to Y \) is a bijection if it is both an injection and surjection.
Task 2

Consider the following functions and determine if the given function is an injection, surjection, and/or bijection.

\[f(x) = x^2 \] \hspace{1cm} \[g(x) = \frac{x}{2} \] \hspace{1cm} \[h(x) = x^3 - x \]

Discuss your answers!

a. \(f : \mathbb{R} \to \mathbb{R}, \ f(x) = x^2 \)

b. \(g : \mathbb{R} \to \mathbb{R}, \ g(x) = \frac{x}{2} \)

c. \(h : \mathbb{R} \to \mathbb{R}, \ h(x) = x^3 - x \)

d. Question: All of the above functions are defined on \(\mathbb{R} \). Consider their graphs in the coordinate system. Which of the following implies surjectivity, which implies injectivity, and which implies neither?

(1) any vertical line intersects the graph at most once
(2) any horizontal line intersects the graph at most once
(3) any vertical line intersects the graph at least once
(4) any horizontal line intersects the graph at least once
e. Recall the functions defined in parts a-c. Is \(f \circ h : \mathbb{R} \to \mathbb{R} \) surjective and/or injective? (Use [a graphing calculator] if you need to.)

f. Is \(h \circ f : \mathbb{R} \to \mathbb{R} \) surjective and/or injective?

g. Let \(f : \mathbb{R} \to \mathbb{Z} \) give as output the greatest integer less than or equal to \(x \), denoted as the floor function \(f(x) = \lfloor x \rfloor \). For instance, \(f(3.5) = 3 \), \(f(3) = 3 \), and \(f(\pi) = 3 \).

h. \(f : \mathbb{Z} \to \mathbb{Z} \)
 \(f(x) = \lfloor x \rfloor \)

i. Optional: \(f : \text{Brown University Students} \to \text{Countries in the World} \)
 \(f(\text{student}) = \text{country where student is from} \)

j. Optional: \(f : \text{First Year Students} \to \text{First Year Dorms} \)
 \(f(\text{student}) = \text{dorm that student lives in} \)

1Note that we can similarly define the ceiling function \(f : \mathbb{R} \to \mathbb{Z} \) that gives as output the smallest integer greater than or equal to \(x \), denoted the ceiling function \(f(x) = \lceil x \rceil \). For example, \(h \lceil 3.5 \rceil = 4 \), \(f(3) = 3 \), and \(f(\pi) = 4 \).
Task 3

Let $A = \{0, 1, 2\}$ and the function $f : \mathcal{P}(A) \rightarrow \{0, 1\}^3$.

Denote the output as (f_0, f_1, f_2), where each f_i is 0 or 1. Given an element $X \in \mathcal{P}(A)$, define $f(X)$ where each f_i is 1 iff $i \in X$, and 0 otherwise.

For instance, $f(\{0, 2\}) = (1, 0, 1)$, $f(A) = (1, 1, 1)$, and $f(\emptyset) = (0, 0, 0)$.

a. Consider a set of size n where $A = \{1, 2, \ldots, n\}$. Generalize the above bijective function for $\mathcal{P}(A)$ and binary strings of length n (that is, $\{0, 1\}^n$).

b. Prove that the above function is a bijection.

Optional Task 4

a. If a function $f : X \rightarrow Y$ is injective, what can we say about the cardinalities of X and Y? Try making some diagrams where X has more elements than Y, fewer
elements than Y, or the same number of elements as Y. When are you able to create an injection, and when are you not?

b. If a function $f : X \to Y$ is surjective, what can we say about the cardinalities of X and Y? Again, you might want to draw out some examples.

c. Based on what you’ve found in the previous two questions, if a function $f : X \to Y$ is bijective, what can we say about the cardinalities of X and Y? When can we create a bijection between two sets, and when can we not?

Checkpoint 2 — Call a TA over!
Part 3: Induction

Induction

Most of next week’s recitation will focus on induction. But we’ve introduced the concept this week, and wanted to get an early start on practicing it!

Why does induction work?

Let’s consider an infinite ladder (the best kind of ladder). Suppose we can prove to you both of the following things:

1. You can get to the 1st step of the ladder by stepping up to it.
2. If you can get to the kth step of the ladder, then you can get to step $k + 1$ by stepping up to it.

Why is it the case that for all $n \geq 1$, you can get to the nth step of the ladder? Discuss with your group.

We already know we can get to the first step from the first statement. Then, we know we can get to the second step from the second statement. From there, the process repeats and we conclude that we can get to the third, then the fourth... and so on.

Why are we talking about climbing infinite ladders? Well, it turns out this is a good way to think about how induction works.

The base case says that we can reach the first step of the ladder.

The inductive hypothesis says that we can get to the kth step of the ladder.

The inductive step says that if we can get to the kth step of the ladder, then we can get to step $k + 1$.

Therefore, once we get to step 1, we can get to step 2. Once we get to step 2, we can get to step 3. And so on for all steps of the infinite ladder.
Induction Template

We will now review the template for an inductive proof.

For example, say we are trying to prove that \(\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \) is true for all \(n \in \mathbb{N} \). In other words, show that this is the equation for calculating the sum of squares \(0^2 + 1^2 + 2^2 + \cdots + n^2 \).

Predicate. Define the predicate \(P(n) \). Recall that a predicate is a function that takes in an argument, \(n \), and evaluates to true or false.

\[
\text{Let } P(n) \text{ be the predicate that }
\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}
\]

Introduce Induction. Make the aspirational assertion that, for all \(n \geq a \), where \(a \) is the smallest value we are considering, \(P(n) \) holds. Remember to bound \(n \!\!\!\leftarrow \)

\[
\text{We will show that, for all } n \geq 0, P(n) \text{ holds.}
\]

Base Case. Show that the base case is true. For some proofs, we may want multiple base cases, but not this time.

\[
\text{We will first show } P(0) \text{ is true, that }
\sum_{i=0}^{0} i^2 = 0 \quad \text{and} \quad \frac{0(0+1)(2*0+1)}{6} = 0
\]

so they are equal.

Inductive Hypothesis. State the inductive hypothesis. In standard induction\(^2\) we assume

\[
P(k) \text{ is true for some fixed, arbitrary integer } k \geq a, \text{ where } a \text{ is your base case value. Sometimes, you may need multiple base cases, and you'll want } k \text{ to be greater than or equal to the biggest of them.}
\]

\[
\text{Assume } P(k) \text{ is true for some fixed, arbitrary integer } k \geq 0.
\]

Inductive Step. Show that \(P(k+1) \) is true given the inductive hypothesis. At some point, you’ll want to “invoke the inductive hypothesis”, which is using the fact that \(P(k) \) is true to show something else in your proof.

\(^2\)We will also cover strong induction, in which we assume \(P(i) \) is true for all \(a \leq i \leq k \)
We will now show that $P(k+1)$ holds, namely

$$\sum_{i=0}^{k+1} i^2 = \frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}$$

We know that

$$\sum_{i=0}^{k+1} i^2 = \left(\sum_{i=0}^{k} i^2\right) + (k+1)^2$$

Invoking the inductive hypothesis, we know that

$$\sum_{i=0}^{k} i^2 = \frac{k(k+1)(2k+1)}{6}$$

Therefore

$$\sum_{i=0}^{k+1} i^2 = \left(\sum_{i=0}^{k} i^2\right) + (k+1)^2$$

$$= \frac{k(k+1)(2k+1)}{6} + (k+1)^2$$

$$= \frac{k(k+1)(2k+1) + 6(k+1)^2}{6}$$

$$= \frac{(k+1)(k(2k+1) + 6(k+1))}{6}$$

$$= \frac{(k+1)(2k^2 + k + 6k + 6)}{6}$$

$$= \frac{(k+1)(2k^2 + 7k + 6)}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6}$$

$$= \frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}$$

as needed.

Conclusion. Conclude your induction.

Because the base case $P(0)$ holds, and because $P(k) \rightarrow P(k+1)$, we have shown by the principle of induction that for all $n \geq 0$, $P(n)$ holds.

\[\square\]
★ Note ★

For the sake of time, we’re only going to look for proof sketches in recitation. It’s alright to not write down everything, as long as you understand it. In your homework, we’ll be looking for full-fledged formal proofs.

Task 5

Prove by induction that, for all $n \geq 2$,

$$\left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{n^2}\right) = \frac{n + 1}{2n}$$

Checkoff - Call a TA over!