Proofs About Sets \& Quantification

Robert Y. Lewis

CS 02202024

February 12, 2024

Overview

1 Proofs about Sets, Proof by Cases (1.7)

2 Predicate Formulas (3.6)

Set equality

When are two sets equal?
If A and B are sets, $A=B$ if and only if $\forall x, x \in A \leftrightarrow x \in B$.
Equivalently: $(\forall x, x \in A \rightarrow x \in B) \wedge(\forall x, x \in B \rightarrow x \in A)$.
Equivalently: $A \subseteq B \wedge B \subseteq A$.
This suggests a proof technique for proving set equality: the set-element method.

Proving set equalities: set-element method

Theorem: For any sets A and B of elements in universe $U, \overline{A \cap B}=\bar{A} \cup \bar{B}$.
(DeMorgan's Law again! Now, connects intersection and union instead of \wedge and \vee.)
Proof. We proceed by the set element method. First, we show $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$. Suppose $x \in \overline{A \cap B}$. This means that x is not in both A and B. Written as a formula:
$\neg(x \in A \wedge x \in B)$. By De Morgan's law, this is equivalent to $\neg(x \in A) \vee \neg(x \in B)$. So $x \in \bar{A} \vee x \in \bar{B}$, as desired.

Now we show $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$. Suppose $x \in \bar{A} \cup \bar{B}$. This means that $x \in \bar{A} \vee x \in \bar{B}$. Equivalently, $\neg(x \in A) \vee \neg(x \in B)$. By De Morgan again, this is equivalent to $\neg(x \in A \wedge x \in B)$, so $x \in \overline{A \cap B}$ as desired.

Fact about groups of people

Any two people have either met or not.
Given a set of people G, if all pairs of people in G have met, we'll call it a club. If no two people in G have met, we'll call them strangers.

Theorem. Every collection of 6 people includes a club of 3 people or a group of 3 strangers.

Does that seem true? Try some examples on the board.

Proof (Part 1)

The proof is by case analysis. Let x denote one of the six people. Let $R=G \backslash\{x\}$ be the rest. There are two cases:
1 Among R, at least 3 have met x.
2 Among R, at least 3 have not met x.
At least one of these cases must hold. Since $|R|$ is odd, either more than half in R know x or less than half in R know x (and therefore more than half do not know x).

Case 1: At least 3 have met x. Let $J \subseteq R$ be those individuals. Two subcases:
1.1 No pair in J have met each other. So, J is a group of at least 3 strangers and the theorem holds in this subcase.
1.2 Some pair in J have met each other. That pair and x are a club of 3 people and the theorem holds in this subcase, too.
That covers Case 1!

Proof (Part 2)

Case 2: At least 3 have not met x. Let $J \subseteq R$ be those individuals. Two subcases:
2.1 Every pair in J have met each other. So, R is a club of at least size 3 and the theorem holds in this subcase.
2.2 Some pair in J haven't met each other. That pair and x are a group of strangers of 3 people and the theorem holds in this subcase, too.
That covers Case 2! It's kind of the inverse-video version of Case 1.
Since we showed that only these two cases can occur and the theorem holds in both, the theorem always holds.

Mixing quantifiers

Theorem (sparse squares): There's a perfect square arbitrarily far from its closest perfect square.
Clear? Maybe a tad vague. True? How do we say this in logic?
$\forall d: \mathbb{N}, \exists i: \mathbb{N}, \forall j: \mathbb{N}$,
(i is a perfect square) $\wedge(|i-j| \leq d \rightarrow \neg(j$ is a perfect square $)$).
The expressions nest inside each other. The order matters.
You can think of it like a little game. I'm claiming that you can pick any d you want. I'll then pick an i that's a perfect square AND no matter what j you pick that is within d values of i, j won't be a perfect square.

So, what's my winning strategy?

Any ambiguity is too many

"If you can identify any bird, you've got talent."
1 If $\exists b$, you can identify b, then you've got talent.
2 If $\forall b$, you can identify b, then you've got talent.
"...statistics show that, in the UK, someone brews a cup of tea every second."
$1 \forall t, \exists p, p$ brews a cup of tea at second t
"That person's name is Nigel."
$2 \exists p, \forall t, p$ brews a cup of tea at second t

DeMorgan returns: Negating quantifiers

These two statements are equivalent:
■ Not everyone likes coffee.

- There's someone who doesn't like coffee.
$\neg \forall x, P(x)$ is equivalent to $\exists x, \neg P(x)$.

