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Set equality

When are two sets equal?

If A and B are sets, A = B if and only if ∀x, x ∈ A↔ x ∈ B.

Equivalently: (∀x, x ∈ A→ x ∈ B) ∧ (∀x, x ∈ B→ x ∈ A).

Equivalently: A ⊆ B ∧ B ⊆ A.

This suggests a proof technique for proving set equality: the set-element method.
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Proving set equalities: set-element method

Theorem: For any sets A and B of elements in universe U, A ∩ B = A ∪ B.

(DeMorgan’s Law again! Now, connects intersection and union instead of ∧ and ∨.)

Proof. We proceed by the set element method. First, we show A ∩ B ⊆ A ∪ B. Suppose
x ∈ A ∩ B. This means that x is not in both A and B. Written as a formula:
¬(x ∈ A ∧ x ∈ B). By De Morgan’s law, this is equivalent to ¬(x ∈ A) ∨ ¬(x ∈ B). So
x ∈ A ∨ x ∈ B, as desired.

Now we show A ∪ B ⊆ A ∩ B. Suppose x ∈ A ∪ B. This means that x ∈ A ∨ x ∈ B.
Equivalently, ¬(x ∈ A) ∨ ¬(x ∈ B). By De Morgan again, this is equivalent to
¬(x ∈ A ∧ x ∈ B), so x ∈ A ∩ B as desired.
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Fact about groups of people

Any two people have either met or not.

Given a set of people G, if all pairs of people in G have met, we’ll call it a club. If no two
people in G have met, we’ll call them strangers.

Theorem. Every collection of 6 people includes a club of 3 people or a group of 3
strangers.

Does that seem true? Try some examples on the board.
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Proof (Part 1)
The proof is by case analysis. Let x denote one of the six people. Let R = G \ {x} be the
rest. There are two cases:

1 Among R, at least 3 have met x.
2 Among R, at least 3 have notmet x.

At least one of these cases must hold. Since |R| is odd, either more than half in R know x
or less than half in R know x (and therefore more than half do not know x).

Case 1: At least 3 have met x. Let J ⊆ R be those individuals. Two subcases:

1.1 No pair in J have met each other. So, J is a group of at least 3 strangers and the
theorem holds in this subcase.

1.2 Some pair in J have met each other. That pair and x are a club of 3 people and the
theorem holds in this subcase, too.

That covers Case 1!
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Proof (Part 2)

Case 2: At least 3 have not met x. Let J ⊆ R be those individuals. Two subcases:
2.1 Every pair in J have met each other. So, R is a club of at least size 3 and the theorem

holds in this subcase.
2.2 Some pair in J haven’t met each other. That pair and x are a group of strangers of 3

people and the theorem holds in this subcase, too.
That covers Case 2! It’s kind of the inverse-video version of Case 1.

Since we showed that only these two cases can occur and the theorem holds in both,
the theorem always holds.
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Mixing quantifiers

Theorem (sparse squares): There’s a perfect square arbitrarily far from its closest
perfect square.

Clear? Maybe a tad vague. True? How do we say this in logic?

∀d : N,∃i : N,∀j : N,
(i is a perfect square) ∧ (|i − j| ≤ d → ¬(j is a perfect square)).

The expressions nest inside each other. The order matters.

You can think of it like a little game. I’m claiming that you can pick any d you want. I’ll
then pick an i that’s a perfect square AND no matter what j you pick that is within d
values of i, j won’t be a perfect square.

So, what’s my winning strategy?
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Any ambiguity is too many

“If you can identify any bird, you’ve got talent.”
1 If ∃b, you can identify b, then you’ve got talent.
2 If ∀b, you can identify b, then you’ve got talent.

“...statistics show that, in the UK, someone brews a cup of tea every second.”
1 ∀t,∃p, p brews a cup of tea at second t

“That person’s name is Nigel.”
2 ∃p,∀t, p brews a cup of tea at second t
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DeMorgan returns: Negating quantifiers

These two statements are equivalent:
Not everyone likes coffee.
There’s someone who doesn’t like coffee.

¬∀x, P(x) is equivalent to ∃x,¬P(x).
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