Proofs About Sets & Quantification

Robert Y. Lewis

CS 0220 2024

February 12, 2024
Overview

1. Proofs about Sets, Proof by Cases (1.7)

2. Predicate Formulas (3.6)
Set equality

When are two sets equal?

If A and B are sets, $A = B$ if and only if $\forall x, x \in A \leftrightarrow x \in B$.

Equivalently: $(\forall x, x \in A \rightarrow x \in B) \land (\forall x, x \in B \rightarrow x \in A)$.

Equivalently: $A \subseteq B \land B \subseteq A$.

This suggests a proof technique for proving set equality: the set-element method.
Proving set equalities: set-element method

Theorem: For any sets A and B of elements in universe U, $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

(DeMorgan’s Law again! Now, connects intersection and union instead of \land and \lor.)

Proof. We proceed by the set element method. First, we show $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$. Suppose $x \in \overline{A \cap B}$. This means that x is not in both A and B. Written as a formula: $\neg(x \in A \land x \in B)$. By De Morgan’s law, this is equivalent to $\neg(x \in A) \lor \neg(x \in B)$. So $x \in \overline{A} \lor x \in \overline{B}$, as desired.

Now we show $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$. Suppose $x \in \overline{A} \cup \overline{B}$. This means that $x \in \overline{A} \lor x \in \overline{B}$. Equivalently, $\neg(x \in A) \lor \neg(x \in B)$. By De Morgan again, this is equivalent to $\neg(x \in A \land x \in B)$, so $x \in \overline{A \cap B}$ as desired.
Fact about groups of people

Any two people have either met or not.

Given a set of people G, if all pairs of people in G have met, we’ll call it a $club$. If no two people in G have met, we’ll call them $strangers$.

Theorem. Every collection of 6 people includes a club of 3 people or a group of 3 strangers.

Does that seem true? Try some examples on the board.
Proof (Part 1)

The proof is by case analysis. Let x denote one of the six people. Let $R = G \setminus \{x\}$ be the rest. There are two cases:

1. Among R, at least 3 have met x.
2. Among R, at least 3 have not met x.

At least one of these cases must hold. Since $|R|$ is odd, either more than half in R know x or less than half in R know x (and therefore more than half do not know x).

Case 1: At least 3 have met x. Let $J \subseteq R$ be those individuals. Two subcases:

1.1 No pair in J have met each other. So, J is a group of at least 3 strangers and the theorem holds in this subcase.
1.2 Some pair in J have met each other. That pair and x are a club of 3 people and the theorem holds in this subcase, too.

That covers Case 1!
Case 2: At least 3 have not met x. Let $J \subseteq R$ be those individuals. Two subcases:

2.1 Every pair in J have met each other. So, R is a club of at least size 3 and the theorem holds in this subcase.

2.2 Some pair in J haven’t met each other. That pair and x are a group of strangers of 3 people and the theorem holds in this subcase, too.

That covers Case 2! It’s kind of the inverse-video version of Case 1.

Since we showed that only these two cases can occur and the theorem holds in both, the theorem *always* holds.
Mixing quantifiers

Theorem (sparse squares): There’s a perfect square arbitrarily far from its closest perfect square.

Clear? Maybe a tad vague. True? How do we say this in logic?

\[\forall d : \mathbb{N}, \exists i : \mathbb{N}, \forall j : \mathbb{N}, \]
\[(i \text{ is a perfect square}) \land (|i - j| \leq d \rightarrow \neg(j \text{ is a perfect square})). \]

The expressions nest inside each other. The order matters.

You can think of it like a little game. I’m claiming that you can pick any \(d\) you want. I’ll then pick an \(i\) that’s a perfect square AND no matter what \(j\) you pick that is within \(d\) values of \(i\), \(j\) won’t be a perfect square.

So, what’s my winning strategy?
Any ambiguity is too many

“If you can identify any bird, you’ve got talent.”
1. If ∃b, you can identify b, then you’ve got talent.
2. If ∀b, you can identify b, then you’ve got talent.

“...statistics show that, in the UK, someone brews a cup of tea every second.”
1. ∀t, ∃p, p brews a cup of tea at second t
 “That person’s name is Nigel.”
2. ∃p, ∀t, p brews a cup of tea at second t
DeMorgan returns: Negating quantifiers

These two statements are equivalent:

■ Not everyone likes coffee.
■ There’s someone who doesn’t like coffee.

\(\neg \forall x, P(x) \) is equivalent to \(\exists x, \neg P(x) \).