Formal Proofs in FOL

Robert Y. Lewis

CS 0220 2024

February 7, 2024
Overview

1. Proof rules for quantifiers

2. Quantifiers in Lean
First order logic: a refresher

From Monday: *first order logic* extends the language of *propositional logic*.

Our atoms become predicates: propositions “about things.”

We can quantify over *domains* of things.

Every prime number greater than 2 is odd.

\[\forall n : \mathbb{N}, \text{Prime}(n) \land (n > 2) \rightarrow \text{Odd}(n) \]

We say \(\mathbb{N} \) is the *domain of quantification* for the universal quantifier here.
Why should computer scientists care?

Well, how do you specify the behavior of the programs you write?

- $\forall L: \text{List}\mathbb{N}, \text{reverse}(\text{reverse}(L)) = L$
- $\forall L: \text{List}\mathbb{N}, \text{isSorted}(\text{sort}(L))$
- $\forall L: \text{List}\mathbb{N}, \neg(L = []) \rightarrow \exists x: \mathbb{N}, \text{head}(L) = x$

Test cases can only describe behavior in concrete instances. *Specifications*, written as first order formulas, are much richer!
for all proof rules

Introduction: To prove a forall goal $\forall x : T, G(x)$:
Suppose you have a (new, freshly named) $x : T$ in your context, and prove $G(x)$ for that new x.

I want to show that every number is either prime or the product of two other numbers. Suppose n is a number. Show that n is prime or n is the product of two other numbers.

Elimination: To use a forall hypothesis $\forall x : T, H(x)$:
If $t : T$ is any term of the right type, then you can add a hypothesis $H(t)$.

I know that every number is either prime or the product of two other numbers. Therefore, I know that either 2 prime or 2 is the product of two other numbers. I know that either 5 is prime or 5 is the product of two other numbers...
Exists proof rules

To prove an existential goal $\exists x : T, G(x)$:
Provide a witness.

I want to show that there is a perfect square whose final digit is 4. I claim that my witness is 64. Then, I must show that 64 is a perfect square and the final digit of 64 is 4.

Elimination: To use an existential hypothesis $\exists x : T, H(x)$:
you can create a (new, freshly named) $t : T$, and add a hypothesis $H(t)$. "Give a name to the witness."

I know that there is a perfect square whose final digit is 4. Let’s call this perfect square ps. I know that ps is a perfect square and the final digit of ps is 4.
Quantifiers in Lean

We’ll see some new tactics in Lean:

- forall introduction: fix x
- forall elimination: have hx := hall x
- exists introduction: existsi w
- exists elimination: eliminate hex with x hx

Remember the CS22 Lean reference manual: https://docs.cs22.io/