
Why does induction work? Other inductive sets Inductive proofs Closing

Inductive data

Robert Y. Lewis

CS 0220 2025

April 23, 2025



Why does induction work? Other inductive sets Inductive proofs Closing

Overview

1 Why does induction work?

2 Other inductive sets

3 Inductive proofs

4 Closing



Why does induction work? Other inductive sets Inductive proofs Closing

Induction on N

We introduced induction as a technique to prove things about natural numbers.

It makes some intuitive sense. But let’s examine things more carefully.



Why does induction work? Other inductive sets Inductive proofs Closing

Defining N

What are the natural numbers?

1 0 is a natural number.
2 For any natural number k, k + 1 is a natural number. successor(k)
3 successor is injective.
4 For every k, successor(k) ̸= 0.
5 Every natural number is either 0 or the successor of another natural number.

Are there any sets that satisfy properties 1-5 that don’t look like N?



Why does induction work? Other inductive sets Inductive proofs Closing

Defining N

Let’s try again.

1 0 is a natural number.
2 For any natural number k, k + 1 is a natural number. successor(k)
3 successor is injective.
4 For every k, successor(k) ̸= 0.
5 Every natural number can be represented as a (finite) directed tree, where each

node is either
labeled 0, and has no children; or
labeled successor, and has one child.

Condition 5 is equivalent to the principle of induction.



Why does induction work? Other inductive sets Inductive proofs Closing

Again, succinctly

We define N to be an inductive set with constructors
0 : N
successor: N → N.

An inductive set is defined by giving a list of constructors that are assumed to satisfy
properties 3-5.
See also: inductive types or algebraic data types in some programming languages.

Inductive sets are sets of “discrete objects.”



Why does induction work? Other inductive sets Inductive proofs Closing

And, recursion

Let A be any set, a ∈ A, and g : N× A → A. There exists a unique function f : N → A
satisfying the two clauses:

f(0) = a
f(k + 1) = g(k, f(k))

“Exists” and “unique.” In other words: “to define a function with domain N, we can
describe its behavior on the two constructors.”

Sounds a lot like induction. And the tree property.



Why does induction work? Other inductive sets Inductive proofs Closing

Inductive lists

Let A be a set. The set L(A) of lists of elements of A is an inductive set with constructors
nil : L(A)
cons : A × L(A) → L(A)

“To create a list, either create the empty list, or take a list and tack on one more value.”



Why does induction work? Other inductive sets Inductive proofs Closing

Induction on lists

nil : L(A)
cons : A × L(A) → L(A)

Tree property?

Induction principle?

To show that P(l) holds for every list l ∈ L(A), show:
P(nil)
For every a ∈ A and l ∈ L(A), P(l) → P(cons(a, l))



Why does induction work? Other inductive sets Inductive proofs Closing

Inductive integers?

Let’s try to define Z as an inductive set.

Constructors:
0 : Z
successor : Z → Z
predecessor : Z → Z

Fails: why?



Why does induction work? Other inductive sets Inductive proofs Closing

Inductive integers!

A working, if lame, attempt:

Constructors:
0 : Z
posOfNat : N → Z
negOfNat : N → Z

posOfNat(n) “=” n + 1
negOfNat(n) “=” −(n + 1)



Why does induction work? Other inductive sets Inductive proofs Closing

Inductive formulas
The set F of formulas of propositional logic is an inductive set with constructors

letter : N → F
not : F → F
and : F × F → F
or : F × F → F
implies : F × F → F
iff : F × F → F

Principle of induction? To prove P(φ) holds for every prop formula φ, it suffices to show:
P(letter(i)) for every i (“P holds of every propositional letter”)
P(φ) → P(not(φ))
P(φ1) ∧ P(φ2) → P(and(φ1, φ2))

P(φ1) ∧ P(φ2) → P(or(φ1, φ2))

. . .



Why does induction work? Other inductive sets Inductive proofs Closing

Inductive formulas

Recursion on formulas, in words:

To define a function f : F → A, it suffices to describe the behavior of F on each
constructor of F.

Example: evaluation E(φ) under a propositional assignment v : N → {T, F}.
E(letter(i)) = v(i)
E(not(φ)) = NOT(E(φ))
E(and(φ1, φ2)) = AND(E(φ1), E(φ2))

Challenge: phrase this like we phrased recursion on N.



Why does induction work? Other inductive sets Inductive proofs Closing

Proofs as data

We have a technique for figuring out if a propositional formula is valid: write the truth
table, see if all columns are T.

This is more of a “process” than an “object.” Intuition: if you write down an argument
like this, the only way I can check it is by doing it myself and comparing.

Other ways?



Why does induction work? Other inductive sets Inductive proofs Closing

Proofs as data: introduction rules

How can I prove φ1 ∧ φ2? Prove φ1 and then prove φ2.

How can I prove φ1 ∨ φ2? Prove φ1. Alternatively, prove φ2.

This sounds sort of inductive. Constructors?
and_intro : proof(φ1)× proof(φ2) → proof(φ1 ∧ φ2)

or_intro_left : proof(φ1) → proof(φ1 ∨ φ2)

or_intro_right : proof(φ2) → proof(φ1 ∨ φ2)



Why does induction work? Other inductive sets Inductive proofs Closing

Proofs as data: elimination rules

What can I do with a proof of φ1 ∧ φ2? Prove φ1. Alternatively, prove φ2.

and_elim_left : proof(φ1 ∧ φ2) → proof(φ1)

and_elim_right : proof(φ1 ∧ φ2) → proof(φ2)

What can I do with a proof of φ1 ∨ φ2? Case split. . . tricky.

Need to analyze implication first, which also muddies the picture a bit.



Why does induction work? Other inductive sets Inductive proofs Closing

For another time

Can’t dive into the details now. But we can make things more or less work.

Induction on proofs?? “I can only construct proofs of valid formulas.”

Recursion on proofs?? Given a proof, reconstruct the formula it proves—proof checking!

Proofs are directed trees!

(Intrigued? Take cs1715 Formal Proof and Verification.)



Why does induction work? Other inductive sets Inductive proofs Closing

Final thoughts

We’ve seen a lot of topics this semester. Remember why we’ve done this:

Vocabulary. Use the languages of logic, combinatorics, probability, . . .as a shared,
precise vocabulary for discussing problems.
Abstraction. A lot of the problems we’ve studied will show up in different contexts,
in and out of computer science. Remember our abstract solutions and adapt them
to reality.
Team problem solving. CS is collaborative, and hopefully you’ve gotten practice
solving problems with a team.


	Why does induction work?
	Other inductive sets
	Inductive proofs
	Closing

