Intro to Probability

Robert Y. Lewis

CS 0220 2024

April 4, 2024
Overview

1. Probability Spaces (16.5.1)
2. Probability Rules from Set Theory (16.5.2)
3. Uniform Probability Spaces (16.5.3)
4. Infinite Probability Spaces (16.5.4)
Definitions of probability spaces

Definition: A countable *sample space* S is a nonempty countable(*) set.

Definition: An element $\omega \in S$ is called an *outcome*.

Definition: A subset of S is called an *event*.

Definition: A *probability function* on a sample space S is a function $\Pr : S \to \mathbb{R}$ such that

- $\Pr[\omega] \geq 0$ for all $\omega \in S$, and
- $\sum_{\omega \in S} \Pr[\omega] = 1$.

Definition: A sample space together with a probability function is called a *probability space*. For any event $E \subseteq S$, the probability of E is defined to be the sum of the probabilities of outcomes in E:

$$\Pr[E] ::= \sum_{\omega \in E} \Pr[\omega].$$
Countability

Side note: a set S is *countable* if it is finite or there is a bijective function $\mathbb{N} \to S$.

Intuition: we can “list” the elements of S. $\{s_0, s_1, s_2, \ldots\}$. Maybe the list ends, maybe it doesn’t...

We’ll mostly deal with finite probability spaces.
Sum rule

Rule: If \(\{E_0, E_1, \ldots, \} \) is collection of disjoint events, then

\[
\text{Pr} \left[\bigcup_{n \in \mathbb{N}} E_n \right] = \sum_{n \in \mathbb{N}} \text{Pr}[E_n].
\]

Like the sum rule in counting.

Example: I counted plants at the CS22 nursery. 60% of the plants had red flowers, 30% had yellow flowers, and 10% had no flowers. If I pick a plant at random, the probability that it has flowers is 90%.

What is sample space? What are events?
Complement rule

A new day, a new collection of plants:

<table>
<thead>
<tr>
<th>set</th>
<th>type</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>Red flowers</td>
<td>0.60</td>
</tr>
<tr>
<td>(B)</td>
<td>Yellow flowers</td>
<td>0.25</td>
</tr>
<tr>
<td>(A \cap B)</td>
<td>both</td>
<td>0.15</td>
</tr>
<tr>
<td>(\overline{A} \cap \overline{B})</td>
<td>neither</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Since we know that the sets \(A \) and \(\overline{A} \) are disjoint and cover all possibilities, the sum rule tells us that \(\Pr[A] + \Pr[\overline{A}] = 1 \).

Rule: \(\Pr[\overline{A}] = 1 - \Pr[A] \).

Example: The chance that a plant does not have red flowers is (in symbols) \(\Pr[\overline{A}] = 1 - \Pr[A] = 0.40 \).
Difference Rule

<table>
<thead>
<tr>
<th>set</th>
<th>type</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Red flowers</td>
<td>0.60</td>
</tr>
<tr>
<td>B</td>
<td>Yellow flowers</td>
<td>0.25</td>
</tr>
<tr>
<td>$A \cap B$</td>
<td>both</td>
<td>0.15</td>
</tr>
<tr>
<td>$\overline{A} \cap \overline{B}$</td>
<td>neither</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Rule: $Pr[B \setminus A] = Pr[B] − Pr[A \cap B]$

Example: The chance that a plant has red flowers but not yellow flowers is (in symbols) $Pr[A \setminus B] = Pr[A] − Pr[A \cap B] = 0.45$.

Proof: Follows from the Sum Rule because B is the union of the disjoint sets $B − A$ and $A \cap B$.
Inclusion-Exclusion

<table>
<thead>
<tr>
<th>set</th>
<th>type</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Red flowers</td>
<td>0.60</td>
</tr>
<tr>
<td>B</td>
<td>Yellow flowers</td>
<td>0.25</td>
</tr>
<tr>
<td>$A \cap B$</td>
<td>both</td>
<td>0.15</td>
</tr>
<tr>
<td>$\bar{A} \cap \bar{B}$</td>
<td>neither</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Rule: $\Pr[A \cup B] = \Pr[A] + \Pr[B] - \Pr[A \cap B]$

Example: The chance that a plant has flowers is (in symbols) $\Pr[A \cup B] = \Pr[A] + \Pr[B] - \Pr[A \cap B] = 0.70$.

Proof: Follows from the Sum and Difference Rules, because $A \cup B$ is the union of the disjoint sets A and $B \setminus A$.
Boole’s Inequality

<table>
<thead>
<tr>
<th>set</th>
<th>type</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Red flowers</td>
<td>0.60</td>
</tr>
<tr>
<td>B</td>
<td>Yellow flowers</td>
<td>0.25</td>
</tr>
<tr>
<td>$A \cap B$</td>
<td>both</td>
<td>0.15</td>
</tr>
<tr>
<td>$\overline{A} \cap \overline{B}$</td>
<td>neither</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Rule: $\Pr[A \cup B] \leq \Pr[A] + \Pr[B]$

Example: The chance that a plant has flowers is (in symbols) $\Pr[A \cup B] \leq \Pr[A] + \Pr[B] = 0.85$.

Proof by inclusion-exclusion and the fact that probabilities are non-negative.
Monotonicity Rule

<table>
<thead>
<tr>
<th>set</th>
<th>type</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Red flowers</td>
<td>0.60</td>
</tr>
<tr>
<td>B</td>
<td>Yellow flowers</td>
<td>0.25</td>
</tr>
<tr>
<td>$A \cap B$</td>
<td>both</td>
<td>0.15</td>
</tr>
<tr>
<td>$\overline{A} \cap \overline{B}$</td>
<td>neither</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Rule: If $A \subseteq B$, then $\Pr[A] \leq \Pr[B]$

Example: The chance that a plant has yellow flowers must be at least as big as the chance that it has both red and yellow flowers.

Proof: $\Pr[B] = \Pr[A \cup (B \setminus A)] = \Pr[A] + \Pr[B - A] \geq \Pr[A]$. First equality because $A \subseteq B$. Then, they add together by the sum rule because the two sets are disjoint. Then, the last inequality holds because probabilities are non-negative.
Puzzle

We surveyed the dinosaurs at Jurassic Park. About 50% of them were carnivores. About 40% of them were poisonous.

If we pick a dinosaur at random, what’s the probability that it’s neither a carnivore nor poisonous?
Union bound

Rule:

\[\Pr[E_1 \cup E_2 \cup \cdots \cup E_n] \leq \Pr[E_1] + \Pr[E_2] + \cdots + \Pr[E_n]. \]

Example: The probability that a student has conflict with an exam is 0.001. What’s the probability that *any* of 320 students have a conflict? Can’t assume independence because groups of students take classes together, do sports together. Can’t get an exact answer with the information provided.

Union bounds says probability of student 1 or 2 or 3 ... 320 less than or equal to

\[320 \times 0.001 = 0.32. \]

Used in machine learning all the time.
Uniform

Definition: A finite probability space S is said to be *uniform* if $\Pr[\omega]$ is the same for every outcome $\omega \in S$.

In finite spaces, for any $E \subseteq S$,

$$\Pr[E] = \frac{|E|}{|S|}.$$

Examples: Sides of a die, cards in a deck.

Contrast with: Vowels vs. consonants, primes vs. composites.
Counting example

What’s the probability that 5 coin flips leads to a palindromic sequence?

What’s the space of possibilities S? The results of 5 coin flips: HTTHH. $|S| = 2^5 = 32$.

What’s the event of interest E? Palindromic results: TTHTT. $|E| = 2^3 = 8$. That’s because the first 3 flips are “free”, then the 4th flip must match the 2nd and the fifth flip must match the first.

The probability, therefore, is $|E|/|S| = 2^3/2^5 = 1/2^2 = 1/4$.
Three-sided coin

If we want a uniform distribution over two options, we can flip a coin (H/T). If we want a uniform distribution over four options, we can flip two coins (HH/HT/TH/TT). What if we want a uniform distribution over three options?

We could flip two coins and say it’s option 1 if both heads, option 2 if both tails, and option 3 if mismatch. Problem? Yes. The probability of mismatch is $\Pr[HT] + \Pr[TH] = 1/2$. Not $1/3−1/3−1/3$.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HH</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>HT</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>TH</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>1/4</td>
<td></td>
</tr>
</tbody>
</table>
Repeat the trial

We could flip two coins and say it’s option 1 if HH, option 2 if TT, option 3 if HT, and do over if TH. Problem? Maybe. There is an infinite number of outcomes...

Procedure selects option 1 if:

- HH on the first trial
- or TH on the first trial and HH on the second trial
- or TH on the first two trials and HH on the third trial
- ...

\[
Pr(\text{option 1}) = \frac{1}{4} + \frac{1}{4} \times \frac{1}{4} + \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} + \ldots \\
= \sum_{i=1}^{\infty} \frac{1}{4^i} \\
= \frac{1}{4} \times \sum_{i=0}^{\infty} \frac{1}{4^i} \\
= \frac{1}{4} \left(\frac{1}{1-\frac{1}{4}} \right) \\
= \frac{1}{4} \times \frac{4}{3} = \frac{1}{3}.
\]
Aside: Geometric sum

\[x = \sum_{i=0}^{\infty} p^i \]

the sum we want

\[x = p^0 + p^1 + p^2 + p^3 + \ldots \]

expand

\[px = p^1 + p^2 + p^3 + p^4 + \ldots \]

multiply by \(p \)

\[p^0 + px = p^0 + p^1 + p^2 + p^3 + p^4 + \ldots \]

add \(p^0 \)

\[p^0 + px = x \]

defn of \(x \)

\[p^0 = x - px \]

subtract \(px \)

\[1 = x(1 - p) \]

factor/simplify

\[\frac{1}{1-p} = x \]

divide by \(1 - p \)
Infinite sample space

\[S = \{HH, HT, TT, TH : HH, TH : HT, TH : TT, TH : TH : HH, TH : TH : HT, TH : TH : TT, \ldots\} \]
\[= \{(TH)^n : HH, (TH)^n : HT, (TH)^n : TT | n \in \mathbb{N}\} \]

The probability space is:
\[\Pr((TH)^n : HH) = \Pr((TH)^n : HT) = \Pr((TH)^n : TT) = \frac{1}{4^{n+1}}. \]

Note: \[\sum_{n=0}^{\infty} 3 \times \frac{1}{4^{n+1}} = 3/4 \times \frac{1}{1-1/4} = 3/4 \times 4/3 = 1. \]

Non-negative and sums to one, valid probability space!