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GCD Linear Combination Theorem

Theorem: The greatest common divisor of a and b is a linear combination of a and b.
That is, gcd(a, b) = s · a+ t · b for some integers s and t.

Proof: We’ll do strong induction on the claim P(a), for all b ≥ a, gcd(a, b) = s · a+ t · b.

Base case: If a = 0, gcd(a, b) = b = 0 · a+ 1 · b.

Inductive step: Let b = q · a+ r. Equivalently, r = 1 · b− q · a.

gcd(a, b) = gcd(r, a) Remainder thm.
= s · r + t · a Inductive hyp.
= s · (1 · b− q · a) + t · a Defn of r
= (t − sq) · a+ s · b Algebra.

QED.
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Computing the linear combination
We can use this theorem as an algorithm to find the linear combination of a and b that
produces their GCD. Returns (s, t, g) where g is the GCD of the input.

def gcdcombo(a, b):
if a = 0: return(0, 1, b)
else:

(s, t, g) = gcdcombo(rem(b, a), a)
return(t − s · qcnt(b, a), s, g)

gcdcombo(0, 15) = (0, 1, 15)
gcdcombo(10, 15) = (−1, 1, 5)
gcdcombo(24, 64) = (3,−1, 8)
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Computing By Hand
a b q s t g

24 64

def gcdcombo(a, b):
if a = 0: return(0, 1, b)
else:

(s, t, g) = gcdcombo(rem(b, a), a)
return(t − s · qcnt(b, a), s, g)

Do the rems going down, then the weights going up. Note that, at every level:
sa+ tb = g (sanity check!).
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Computing By Hand

a b q s t g
24 64 2 3 −1 8
16 24 1 −1 1 8

8 16 2 1 0 8
0 8 0 1 8

Do the rems going down, then the weights going up. Note that, at every level:
sa+ tb = g (sanity check!).
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Pulvarizing

Corollary: An integer is a linear combination of a and b iff it is a multiple of gcd(a, b).

Proof (for reference):
Let g = gcd(a, b). We showed g = sa+ tb for some s and t. Any multiple of g is a linear
combination of a and b: kg = k(sa+ tb) = (ks)a+ (kt)b.

We know a = k1g and b = k2g because g is a common divisor of a and b. Any linear
combination of a and b is a multiple of g: s′a+ t′b = s′(k1g) + t′(k2g) = (s′k1 + t′k2)g.

Mixing a and b in different combinations, we can only make multiples of g.

Note: The combinations are not unique: sa+ tb = (s− b)a+ (t + a)b.
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Fundamental Theorem of Arithmetic

Theorem: Every integer greater than 1 is a product of a unique non-increasing
sequence of primes.

Lemma: If p is a prime and p|ab, then p|a or p|b.

Proof of Lemma: One case is if gcd(a, p) = p. Then, the claim holds, because a is a
multiple of p.

Otherwise, gcd(a, p) ̸= p. In this case, gcd(a, p) must be 1, since 1 and p are the only
positive divisors of p. Since gcd(a, p) is a linear combination of a and p, we have
1 = sa+ tp for some s, t. Then, b = s(ab) + (tb)p; that is, b is a linear combination of ab
and p. Since p divides both ab and p, it also divides their linear combination, b. QED.
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Proof of Fundamental Theorem of Arithmetic

Lemma: Let p be a prime. If p|a1a2 · · · an, then p divides some ai.

Proof: Every positive integer can be expressed as a product of primes. (Proved by strong
induction!) We need to show this expression is unique. We proceed by contradiction:
Assume there exist positive integers that can be written as products of primes in more
than one way. Take the smallest such integer n and let n = p1p2 · · · pj = q1q2 · · · qk be
the two decompositions. Arrange them in non-increasing order and assume without
loss of generality that p1 ≤ q1. If p1 = q1, the remaining part of the product is smaller
than n and different, which is a contradiction (nwas the smallest).
Note that all the pis are less than q1. But q1|n and n = p1p2 · · · pj, so q1 divides one of
the pis, which contradicts the fact that q1 is bigger than all them. QED.
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Congruence definition

Definition: a is congruent to bmodulo n iff rem(b, n) = rem(a, n). Equivalently,
n|(a− b).

We write a ≡ b (modn).

29 ≡ 15 (mod7) because 7|(29 − 15), namely 14. Both have a remainder of 1 when
divided by 7.

Equivalence relation—partitions the integers.

Transitivity, reflexivity, symmetry.
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Basic modular algebra

In regular algebra,
a = b implies
a+ c = b+ c.

Can we do the same is congruence-land? a ≡ b (modn)
a+ c ≡ b+ c (modn).

Yes!
a ≡ b (modn) iff n|(a− b) iff ∃k, kn = a− b iff ∃k, kn = a− b+ (c− c) iff
∃k, kn = (a+ c)− (b+ c) iff n|((a+ c)− (b+ c)) iff a+ c ≡ b+ c (modn).

Multiplication is repeated addition, so we can also multiply both sides by a constant. By
transitivity, we can always add or multiply each side by values that are congruent!
“Clock arithmetic”.
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Example

2x + 17 ≡ x + 31 (mod12)
2x ≡ x + 14 (mod12) add −17 to both sides
2x ≡ x + 2 (mod12) add 0 to left and −12 to right
x ≡ 2 (mod12) add −x to both sides

Double check. 4 + 17 = 21 vs. 33. Difference is 12, check!
3x + 4 ≡ 27 (mod11)
3x ≡ 23 (mod11) add −4 to both sides

Kind of stuck because we don’t (yet) have a “divide both sides by 3” rule.
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So, what about division?

If a ≡ b (modn), can we divide both sides by c?

7 ≡ 28 (mod3)
1 ≡ 4 (mod3) divide by 7

So, maybe? At least if the answers are integers?

Is division even meaningful more generally?
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Equivalent integers or equal “mod-integers”?

We’ve just introduced “equivalence mod n” as a relation on Z.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

But we can also think about the “set of integers mod n.”

1

0

5

4

3

2
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Equivalent integers or equal “mod-integers”?

What’s the difference? How do we get from one to the other? What structure do they
have in common?

For much deeper thoughts here, take a course on abstract algebra!
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