Modular Arithmetic, Multiplicative Inverse

Robert Y. Lewis

CS 02202024

March 4, 2024

Overview

1 The Pulverizer (8.2.2)

2 Fundamental Theorem of Arithmetic (8.4)

3 Modular Arithmetic (8.5)

4 A brief philosophical digression

GCD Linear Combination Theorem

Theorem: The greatest common divisor of a and b is a linear combination of a and b. That is, $\operatorname{gcd}(a, b)=s \cdot a+t \cdot b$ for some integers s and t.

Proof: We'll do strong induction on the claim $P(a)$, for all $b \geq a, \operatorname{gcd}(a, b)=s \cdot a+t \cdot b$.
Base case: If $a=0, \operatorname{gcd}(a, b)=b=0 \cdot a+1 \cdot b$.
Inductive step: Let $b=q \cdot a+r$. Equivalently, $r=1 \cdot b-q \cdot a$.

$$
\begin{array}{rlrl}
\operatorname{gcd}(a, b) & & =\operatorname{gcd}(r, a) & \\
& & \text { Remaind } \\
& =s \cdot r+t \cdot a & & \text { Inductive } \tag{QED.}\\
& =s \cdot(1 \cdot b-q \cdot a)+t \cdot a & & \text { Defn of } r \\
& =(t-s q) \cdot a+s \cdot b & & \text { Algebra. }
\end{array}
$$

Computing the linear combination

We can use this theorem as an algorithm to find the linear combination of a and b that produces their GCD. Returns (s, t, g) where g is the GCD of the input.

```
def gcdcombo(a,b):
    if }a=0: return(0,1,b
    else:
\[
\begin{aligned}
& (s, t, g)=\operatorname{gcdcombo}(\operatorname{rem}(b, a), a) \\
& \text { return }(t-s \cdot \operatorname{qcnt}(b, a), s, g)
\end{aligned}
\]
```

- $\operatorname{gcdcombo}(0,15)=(0,1,15)$
- gcdcombo $(10,15)=(-1,1,5)$
- $\operatorname{gcdcombo}(24,64)=(3,-1,8)$

Computing By Hand

a	b	q	s	t	g
24	64				

$$
\begin{aligned}
& \text { def } \operatorname{gcdcombo}(a, b) \text { : } \\
& \text { if } a=0 \text { : return }(0,1, b) \\
& \text { else: } \\
& \quad(s, t, g)=\operatorname{gcdcombo}(\operatorname{rem}(b, a), a) \\
& \quad \text { return }(t-s \cdot \operatorname{qcnt}(b, a), s, g)
\end{aligned}
$$

Do the rems going down, then the weights going up. Note that, at every level: $s a+t b=g$ (sanity check!).

Computing By Hand

a	b	q	s	t	g
24	64	2	3	-1	8
16	24	1	-1	1	8
8	16	2	1	0	8
0	8		0	1	8

Do the rems going down, then the weights going up. Note that, at every level: $s a+t b=g$ (sanity check!).

Pulvarizing

Corollary: An integer is a linear combination of a and b iff it is a multiple of $\operatorname{gcd}(a, b)$.

Proof (for reference):

Let $g=\operatorname{gcd}(a, b)$. We showed $g=s a+t b$ for some s and t. Any multiple of g is a linear combination of a and $b: k g=k(s a+t b)=(k s) a+(k t) b$.

We know $a=k_{1} g$ and $b=k_{2} g$ because g is a common divisor of a and b. Any linear combination of a and b is a multiple of $g: s^{\prime} a+t^{\prime} b=s^{\prime}\left(k_{1} g\right)+t^{\prime}\left(k_{2} g\right)=\left(s^{\prime} k_{1}+t^{\prime} k_{2}\right) g$.

Mixing a and b in different combinations, we can only make multiples of g.
Note: The combinations are not unique: $s a+t b=(s-b) a+(t+a) b$.

Fundamental Theorem of Arithmetic

Theorem: Every integer greater than 1 is a product of a unique non-increasing sequence of primes.

Lemma: If p is a prime and $p \mid a b$, then $p \mid a$ or $p \mid b$.
Proof of Lemma: One case is if $\operatorname{gcd}(a, p)=p$. Then, the claim holds, because a is a multiple of p.

Otherwise, $\operatorname{gcd}(a, p) \neq p$. In this case, $\operatorname{gcd}(a, p)$ must be 1 , since 1 and p are the only positive divisors of p. Since $\operatorname{gcd}(a, p)$ is a linear combination of a and p, we have $1=s a+t p$ for some s, t. Then, $b=s(a b)+(t b) p$; that is, b is a linear combination of $a b$ and p. Since p divides both $a b$ and p, it also divides their linear combination, b. QED.

Proof of Fundamental Theorem of Arithmetic

Lemma: Let p be a prime. If $p \mid a_{1} a_{2} \cdots a_{n}$, then p divides some a_{i}.
Proof: Every positive integer can be expressed as a product of primes. (Proved by strong induction!) We need to show this expression is unique. We proceed by contradiction: Assume there exist positive integers that can be written as products of primes in more than one way. Take the smallest such integer n and let $n=p_{1} p_{2} \cdots p_{j}=q_{1} q_{2} \cdots q_{k}$ be the two decompositions. Arrange them in non-increasing order and assume without loss of generality that $p_{1} \leq q_{1}$. If $p_{1}=q_{1}$, the remaining part of the product is smaller than n and different, which is a contradiction (n was the smallest).
Note that all the $p_{i} s$ are less than q_{1}. But $q_{1} \mid n$ and $n=p_{1} p_{2} \cdots p_{j}$, so q_{1} divides one of the $p_{i} \mathrm{~s}$, which contradicts the fact that q_{1} is bigger than all them. QED.

Congruence definition

Definition: a is congruent to b modulo n iff rem $(b, n)=\operatorname{rem}(a, n)$. Equivalently, $n \mid(a-b)$.
We write $a \equiv b(\bmod n)$.
$29 \equiv 15(\bmod 7)$ because $7 \mid(29-15)$, namely 14 . Both have a remainder of 1 when divided by 7 .

Equivalence relation-partitions the integers.
Transitivity, reflexivity, symmetry.

Basic modular algebra

> In regular algebra, $\begin{aligned} a & =b \quad \text { implies } \\ a+c & =b+c\end{aligned}$

Can we do the same is congruence-land? $\begin{array}{lll}a & \equiv b \\ a+c & \equiv b+c \quad(\bmod n) \\ & (\bmod n) .\end{array}$
Yes!
$a \equiv b(\bmod n)$ iff $n \mid(a-b)$ iff $\exists k, k n=a-b$ iff $\exists k, k n=a-b+(c-c)$ iff
$\exists k, k n=(a+c)-(b+c)$ iff $n \mid((a+c)-(b+c))$ iff $a+c \equiv b+c(\bmod n)$.
Multiplication is repeated addition, so we can also multiply both sides by a constant. By transitivity, we can always add or multiply each side by values that are congruent! "Clock arithmetic".

Example

$$
\begin{array}{llll}
2 x+17 & \equiv x+31 & (\bmod 12) & \\
2 x & \equiv x+14 & (\bmod 12) & \text { add }-17 \text { to both sides } \\
2 x & \equiv x+2 & (\bmod 12) & \text { add } 0 \text { to left and }-12 \text { to right } \\
x & \equiv 2 & (\bmod 12) & \text { add }-x \text { to both sides }
\end{array}
$$

Double check. $4+17=21$ vs. 33 . Difference is 12 , check!

```
3x+4 \equiv27 (mod11)
3x \equiv23 (mod11) add -4 to both sides
```

Kind of stuck because we don't (yet) have a "divide both sides by 3 " rule.

So, what about division?

$$
\begin{aligned}
& \text { If } a \equiv b \quad(\bmod n), \text { can we divide both sides by } c \text { ? } \\
& \begin{array}{rll}
7 & \equiv 28 \quad(\bmod 3) \\
1 & \equiv 4 \quad(\bmod 3) \quad \text { divide by } 7 \\
\text { So, maybe? At least if the answers are integers? } \\
\text { Is division even meaningful more generally? }
\end{array} \text { ? }
\end{aligned}
$$

Equivalent integers or equal "mod-integers"?

We've just introduced "equivalence $\bmod n$ " as a relation on \mathbb{Z}.

But we can also think about the "set of integers mod n."

Equivalent integers or equal "mod-integers"?

What's the difference? How do we get from one to the other? What structure do they have in common?

For much deeper thoughts here, take a course on abstract algebra!

