
CSCI 0220 Discrete Structures and Probability R. Lewis

Recitation 6

Number Theory

Number Theory

Definition 1. For a, b ∈ Z, we say that a | b (a divides b) when b = ka for some
k ∈ Z.

Definition 2. The division theorem says that any integer n with respect to some d
can be written as n = qd+ r, where 0 ≤ r ≤ d− 1.

The function qcnt(n, d) returns q. The function rem(n, d) returns r.

Proposition 3. Let x, y, z be integers. If x | y and x | z, then x | (sy + tz) for any
integers s and t. That is, any common divisor of y and z divides a linear combination
of y and z (we call sy + tz a linear combination of y and z).

Task 1

a. Using the division theorem, provide q and r for the following numbers:

i. n = 10, d = 5

Solution:

10 = 2 · 5 + 0, q = 2, r = 0

ii. n = 10, d = 6

Solution:

10 = 1 · 6 + 4, q = 1, r = 4

iii. n = 10, d = 11

Solution:

10 = 0 · 11 + 10, q = 0, r = 10

b. Determine the output of the following:

i. qcnt(52, 13)
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Solution:

4

ii. rem(15, 4)

Solution:

3

iii. rem(93812129481, 2)

Solution:

1

iv. Optional: qcnt(24912, 5)

Solution:

4982 (solving for r = 2 first will make this easier)

c. Given 3 | 9 and 3 | 33, use proposition 3 to show that 3 | 57.

Solution:

We can re-write 57 as a linear combination of 9 and 33; for example, 9 · (−1)+
33 · 2 = 57. Thus, 3 | 57 by the water jug theorem.

d. Similarly, use proposition 3 to prove that we cannot write 4 as a linear combi-
nation of 9 and 15.

Solution:

Assume for the sake of contradiction that there exists s, t such that 4 = 9s+15t.
We know that 3 | 9 and 3 | 15, so by the water jug theorem, 3 | 9s + 15t.
However, 3 ∤ 4, so this is a contradiction.

Modular Congruence

So far, we’ve worked with rem as a function that outputs the remainder. Now, we
will look at the concept of remainders as a relation. We say that two numbers are
related (mod m) if they have the same remainder when divided by m. We denote
this relation with (mod m).

Definition 4. If m is a positive integer, we say the integers a and b are congruent
modulo m, and write a ≡ b (mod m), iff they have the same remainder on division
by m.
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For instance,
5 ≡ 2 (mod 3)

since their remainders are both 2 when divided by 3.

Proposition 5. a ≡ b (mod m) if and only if m | (b − a). In other words, a and b
have the same remainder upon division by n. Proving this is an optional task below!

When you are working on number-theory problems, start by writing out what you
know. If you have that two numbers are equivalent mod another, write that out in
terms on divisibility, and write out what the divisibility means. It will often be easier
to work this way.

Task 2

a. What is 4 congruent to mod 2? Write out three solutions for a ≡ 4 (mod 2).

Solution:

{..., -4, -2, 0, 2, 4,...}

b. Write out three solutions for a ≡ 9 (mod 5).

Solution:

{..., -6, -1, 4, 9, 14,...}

c. Write out three solutions for a ≡ −3 (mod 7).

Solution:

{..., -10, -3, 4, 11, 18...}

d. Prove that proposition 5 above is true; that is, a ≡ b (mod m) if and only if
m | (b− a).

Solution:

We break the proof into two parts for the biconditional:

If a ≡ b (mod m), then there are integers q, q′ and r, with a = qm + r and
b = q′m + r. So, b − a = (q′m + r) − (qm + r) = (q′ − q)m, which means
m | b− a.

If m | (b − a), then there is an x with b − a = xm; that is, b = a + xm. We
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can write a in its divisibility algorithm form as a = qm + r. Substitute this
and we have b = qm+ r+ xm = m(q+ x) + r. This shows that b has the same
remainder as a when divided by m, so we have shown that a ≡ b (mod m) if
m | (b− a).

e. Optional Challenge:

Solve for x in 2x ≡ 1 (mod 5). Are there multiple answers?

Then, try solving it again with 4y ≡ 1 (mod 7).

Solution:

x = {. . . , 3, 8, 13, . . .} y = {. . . , 2, 9, 16, . . .}
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Pseudo-Random Generators

Many computer applications use random numbers. However, truly random numbers
are not actually that easy to generate. As a substitute for random numbers, com-
puters use functions called pseudo-random number generators that produce numbers
having many of the statistical properties of random numbers but are in fact deter-
ministically generated.

Devising good pseudo-random number generators is an on-going research topic in
computer science. Meanwhile, there are a variety of pseudo-random number genera-
tors that are regularly used in practice.

One of the oldest and best known pseudo-random number generators is the linear
congruential generator. The linear congruential generator starts with an initial value
X0 and generates each subsequent value as a function of the previous value according
to the function

Xn+1 = aXn + c (mod m)

The parameters c, a, and m are chosen for efficiency and performance based on
statistical tests. Each number generated lies in the range 0 through m− 1 and can
be scaled if a different range is desired.

Optional: Task 3

Let a = 2, c = 7, m = 13, X0 = 9.

Find the first five pseudo-random integers X1 to X5.

Solution:

We will use Xn+1 = 2Xn + 7 (mod 13) to find X1...X5, where X0 = 9.

X1 = 2 · 9 + 7 (mod 13) = 12

X2 = 2 · 12 + 7 (mod 13) = 5

X3 = 2 · 5 + 7 (mod 13) = 4

X4 = 2 · 4 + 7 (mod 13) = 2

X5 = 2 · 2 + 7 (mod 13) = 11

v Checkpoint 1 — call over a TA!
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More Properties and Theorems

Definition 6. Two integers a and b are relatively prime if gcd(a, b) = 1, i.e., their
largest common factor is 1.

Definition 7 (Euler’s Phi Function). Euler’s ϕ function is defined mathematically
as follows:

ϕ(n) = |{k ∈ Z | 1 ≤ k ≤ n s.t. gcd(n, k) = 1}| .
That is, it counts the number of integers between 1 and n (inclusive of 1) that are
relatively prime to n itself.

Proposition 8. If p is a prime number, then ϕ(p) = p − 1. This is because every
number from 1 to p− 1 are relatively prime to p itself.

Proposition 9. Euler’s ϕ function is multiplicative on prime numbers. That is, for
prime numbers p and q,

ϕ(pq) = ϕ(p)ϕ(q) = (p− 1)(q − 1)

Properties of Congruence Relations:

For a, b ∈ Z+, if a ≡ b mod m, then

• a+ c ≡ b+ c mod m for c ∈ Z

• ac ≡ bc (mod m) for c ∈ Z

• an ≡ bn mod m for n ∈ Z+

If we also have c ≡ d (mod m), then

• a+ c ≡ b+ d mod m

• ac ≡ bd mod m

Theorem 10. For any a, b ∈ Z, there exists u, v ∈ Z such that au+ bv = gcd(a, b).
In words, we say that the gcd can always be written as a linear combination of a and
b.

Theorem 11. The congruence ax ≡ c (mod m) has a solution if and only if the
gcd(a,m) divides c.

gcd(a,m) | c.

Theorem 12 (Fermat’s Little Theorem). Let p be a prime. If gcd(a, p) = 1, then
ap−1 ≡ 1 (mod p)

Theorem 13 (Euler-Fermat Theorem). If gcd(a, m) = 1, then aϕ(m) ≡ 1 (mod m).
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Task 4

a. Given a ≡ b (mod m), prove a+ c ≡ b+ c (mod m) for c ∈ Z.

Solution:

a ≡ b (mod m) → m|(b− a) → m · k = b− a for some integer k
b− a = b− a+ (c− c) = (b+ c)− (a+ c), so m · k = (b+ c)− (a+ c)
Thus, as (b + c) − (a + c) is m times some integer, m|((b + c) − (a + c)) →
a+ c ≡ b+ c (mod m)

b. Given a ≡ b (mod m), prove ac ≡ bc (mod m) for c ∈ Z.

Solution:

a ≡ b (mod m) → m|(b− a) → m · k = b− a for some integer k
m · k = b− a → m · k · c = c(b− a) → m · k · c = bc− ac
As the integers are closed under addition, k · c is an integer, so bc − ac is m
times some integer.
Thus, m|bc− ac → ac ≡ bc (mod m)

c. Given a ≡ b (mod m), prove a2 ≡ b2 (mod m).

Solution:

a ≡ b (mod m) → m|(b− a) → m · k = b− a for some integer k
→ m · k · (a+ b) = (b− a) · (b+ a)
→ m · k · (a+ b) = b2 − a2

As k, a, and b are integers, so is k ∗ (a + b). Then b2 − a2 is m times some
integer.
Thus, m|b2 − a2 → a2 ≡ b2 (mod m)

d. Optional: For every odd integer n, prove that n4 − 1 is divisible by 8.

Solution:

n4 − 1 = (n2 − 1)(n2 + 1) = (n− 1)(n+ 1)(n2 + 1)
n is odd → n = 2k + 1 for some integer k
n4−1 = ((2k+1)−1)((2k+1)+1)((2k+1)2+1) = 2k·(2k+2)(4k2+4k+1+1) =
2k ·2(k+1)(4k2+4k+2) = 4k(k+1) ·2(2k2+2k+1) = 8k(k+1)(2k2+2k+1)
k(k + 1)(2k2 + 2k + 1) is an integer, so 8|n4 − 1
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Task 5

GCD Practice

In lecture, we discussed using both prime factorization and the Euclidean algorithm
as two methods to calculate the gcd. We will practice using these two methods to
find gcd(44, 96).

a. Write out the prime factorization of 44 and 96.

Example: 36 = 22 · 32

Solution:

44 = 22 · 11
96 = 25 · 3

b. Use the prime factorization of 44 and 96 to find gcd(44, 96).

Solution:

The gcd involves all shared primes with the minimummultiplicity, thus, gcd(44, 96) =
22 = 4.

c. Use the Euclidean algorithm to find gcd(44, 96).

Hint: Recall that gcd(x, y) = gcd(rem(y, x), x).

Solution:

96 = 2 · 44 + 8

44 = 5 · 8 + 4

8 = 2 · 4 + 0

Thus, gcd(44, 96) = 4.

d. Use your equations from part (c) to write gcd(44, 96) as a linear combination
of 44 and 96. Doing so involves substituting remainders from one equation into
where it appears in another, until the gcd is in the same equation as 44 and
96.

Solution:

From parts a and b, we found that gcd(44, 96). We can use the extended
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Euclidean Algorithm to write 4 as a linear combination of 44 and 96.

4 = 44− 5 · 8
4 = 44− 5 · (96− 2 · 44)
4 = 44− 5 · 96 + 10 · 44
4 = 11 · 44− 5 · 96

Alternatively, starting from the first equation:

8 = 96− 2 · 44
44 = 5 · (96− 2 · 44) + 4

44 = 5 · 96− 10 · 44 + 4

4 = 11 · 44− 5 · 96

v Checkpoint 2 — call over a TA!
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Multiplicative Inverses

Say we are trying to solve for x in the equation 8x = 2 in the real numbers, how
would we do so?

Answer: We would multiply both sides by 8−1 = 1
8
. It is called the multiplicative

inverse of 8.

1

8
· 8 · x =

1

8
· 2

⇒ x = 0.25

And, in general, if we are trying to solve for x in the equation ax = c, we simply
multiply both sides by a−1 = 1

a
.

The a−1 notation indicates that a−1 · a = 1.

However, it is not so simple when we are working with congruence relations. Not
every congruence relation of the form ax ≡ c (mod m) has a solution.

For example, there is no solution for x in the equation 8x ≡ 2 (mod 12).

Why does that happen? Well, 12 is a multiple of 4. For a number to be congruent
to 2 mod 12, it must be 2 greater than some multiple of 12 (which is a multiple of
4). However, any 8x will be an exact multiple of 4. We can’t have a multiple of 4
that is 2 larger than another multiple of 4 — they must be at least 4 apart.

Some equations will have solutions though. For instance, a solution for x in the
equation 5x ≡ 2 (mod 12) is x = 10. It was possible for there to be a multiple of 5
that is 2 greater than a multiple of 12.

Proposition 14. In general, ax ≡ c (mod m) has a solution x if and only if
gcd(a,m) | c. (In English: if and only if the gcd of a and m divides c.)

We’ll prove this fact in the next part of this recitation.
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Finding Solutions

Task 6

a. Goal: If d = gcd(a,m), prove that if d | c, ax ≡ c (mod m) has a solution.

i. Come up with two different equations that involve d. One should come
from Definition 1, and the other comes from Theorem 1.

Solution:

c = kd for some k ∈ Z (divisibility)

d = au + mv for some u, v ∈ Z (the gcd can be written as a linear
combination of the two numbers)

ii. Write ax ≡ c (mod m) in another equivalent form. Definitions 1 or 4 may
help here.

Solution:

m | c− ax, or equivalently c− ax = qm for some q ∈ Z

iii. Use your two equations from part (i) to find a solution to x from part
(ii).

Solution:

Substituting, we have c = k(au+mv). Rearranging, we get c−auk = mvk.
Let x = uk and q = vk, which forms a solution.

b. Use the strategy you found above to solve for 4x ≡ 6 (mod 14).

You can use the linear combination 4 · 4 + (−1) · 14 = 2.

Solution:

gcd(4, 14) = 2, and 4 · 4 + (−1) · 14 = 2. 2 | 6 since 2 · 3 = 6, so we can use the
strategy.

So k = 3, u = 4, v = −1. By part a, x = k · u = 3 · 4 = 12

To verify: 14|(6− 4 · 12) → 14|(6− 48) → 14| − 42 which is true.
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Multiplicative Inverses Explained

A multiplicative inverse for a mod m is a number a−1 such that a ·a−1 ≡ 1 (mod m).

In other words, a multiplicative inverse for a mod m is the x that solves ax ≡ 1
(mod m).

a. If a has a multiplicative inverse mod m then what is gcd(a,m)?

Solution:

1

A multiplicative inverse is extremely helpful in solving equations ax ≡ b (mod m).

If a has a multiplicative inverse mod m then x ≡ a−1b (mod m).

b. Use the technique from part (a) to find the multiplicative inverse of 4 (mod 9).

Hint: Use the fact that 28− 27 = 1.

Solution:

28− 27 = 1 → 4 · 7 + 9 · (−3) = 1, so u = 7 and v = −3
Here, k = 1 since c and d are both 1.
Then x = k · u = 1 · 7 = 7
To verify, 4 · 7 = 28 and 9|(1− 28)
So, 4−1 = 7

c. Use 4−1 to solve for x in the equation 4x ≡ 3 (mod 9). Verify your answer.

Solution:

We know 4 · 7 ≡ 1 (mod 9). Using what we proved in the warmup, 4 · 7 · 3 ≡ 3
(mod 9), so x = 7 · 3 = 21.
4 · 21 = 84, 3− 84 = −81 = 9 · (−9) so it is true 9|(3− 4 · 21).

In lecture, we also talked about using Fermat’s Little Theorem and the Euler Phi
Function to find multiplicative inverses. They aren’t covered in this recitation, but
they are very much related, so keep them in mind.
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Optional: The Threes Trick

Here is a trick to determine if a number n is divisible by 3:

“If the sum of the digits of n is divisible by 3, so is n.”

For example, 261 is divisible by 3 since 2 + 6 + 1 = 9.

You are going to prove this fact.

a. For any k ∈ N, what is 10k congruent to mod 3?

Hint: See the third property of modular congruence.

Solution:

10 ≡ 1 (mod 3), and if we raise both sides to the k congruence still holds
→ 10k ≡ 1k (mod 3) → 10k ≡ 1 (mod 3)

b. For any k ∈ N, what is the multiplicative inverse of 10k mod 3?

Recall the multiplicative inverse is the x that solves 10kx ≡ 1 (mod 3).

Solution:

1

c. Prove the “Threes trick” by expanding a number in terms of its digits. That
is, represent the number 792 as 7 · 102 + 9 · 101 + 2 · 100.

Solution:

Consider the integer am · 10m + am−1 · 10m−1 + ... + a1 · 101 + a0 · 100. As
for any positive integer k, 10k ≡ 1 (mod 3), by what was proven in warmup
ak · 10k ≡ ak.
Adding it all up as we also proved was possible in the warmup, am ·10m+am−1 ·
10m−1 + ...+ a1 · 101 + a0 · 100 ≡ am + am−1 + ...+ a1 + a0 (mod 3). So, if the
sum of the digits is divisible by 3, aka congruent to 0 (mod 3), so will the full
number.

d. Can we do a similar trick for other numbers when working in base 10? Does
the Threes trick work when we are not in base 10? What numbers does it
apply for in base b?

Solution:

The trick works for a in base b when b ≡ 1 (mod a).
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v Final Checkoff — call over a TA!
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