CSCI 0220 Discrete Structures and Probability R. Lewis

Recitation 5

Induction

Induction

Why does induction work?

Let’s consider an infinite ladder (the best kind of ladder). Suppose we can prove to
you both of the following things:
1. You can get to the 1% step of the ladder by stepping up to it.
2. If you can get to the k' step of the ladder, then you can get to step k + 1 by
stepping up to it.

Why is it the case that for all n > 1, you can get to the n'" step of the ladder?
Discuss with your group.

We already know we can get to the first step from the first statement. Then, we
know we can get to the second step from the second statement. From there, the
process repeats and we conclude that we can get to the third, then the fourth...
and so on.

Why are we talking about climbing infinite ladders? Well, it turns out this is a good
way to think about how induction works.

The base case says that we can reach the first step of the ladder.
The inductive hypothesis says that we can get to the k' step of the ladder.

The inductive step says that if we can get to the k' step of the ladder, then we can
get to step k + 1.

Therefore, once we get to step 1, we can get to step 2. Once we get to step 2, we
can get to step 3. And so on for all steps of the infinite ladder.
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Induction Template

We will now review the template for an inductive proof.

For example, say we are trying to prove that >,  i* = w is true for all

n € N. In other words, show that this is the equation for calculating the sum of
squares 0% + 12 4+ 22 + .- + n?,

Predicate. Define the predicate P(n). Recall that a predicate is a function that
takes in an argument, n, and evaluates to true or false.

Let P(n) be the predicate that

éiQ _ n(n + 1)6(2n +1)

Introduce Induction. Make the aspirational assertion that, for all n > a, where a
is the smallest value we are considering, P(n) holds. Remember to bound n!

We will show that, for all n € N, P(n) holds.
Base Case. Show that the base case is true. For some proofs, we may want multiple
base cases, but not this time.

We will first show P(0) is true, that

0
1)(2 1
Zi220 and 0(0 + )(6*0-1— ):O

so they are equal.

Inductive Hypothesis. State the inductive hypothesis. In standard induction?,
we assume

P(k) is true for some fixed, arbitrary integer k > a, where a is your base case
value. Sometimes, you may need multiple base cases, and you’ll want k£ to be
greater than or equal to the biggest of them.

Assume P(k) is true for some fized, arbitrary integer k > 0.
Inductive Step. Show that P(k + 1) is true given the inductive hypothesis. At

some point, you'll want to “invoke the inductive hypothesis”, which is using
the fact that P(k) is true to show something else in your proof.

We will also cover strong induction, in which we assume P(i) is true for all a <i < k
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We will now show that P(k + 1) holds, namely

k+1

s D+ +1D)2%k+1)+1
ZZZ( )(( )6)((+))

i=0
We know that
k+1
Z 1 = <Z ) > (k+ 1

Invoking the inductive hypothesis, we know that

iiQ k(b +1)(2k+ 1)

Therefore

_ (E+1D)(k(2k+1)+6(k+1))

_ (k+1)(2k2+2+6k+6)

_ (k+1)(2]{32—?-7k'—|—6>

_ (k+1)(k—?2)(2k+3)

_ (k+1)((k6+1) +1)(2(k+1) + 1)
6

as needed.

Conclusion. Conclude your induction.

Because the base case P(0) holds, and because P(k) — P(k+1), we have shown
by the principle of induction that for alln >0, P(n) holds. O



CSCI 0220 Recitation 5 February 29, 202/

* Note x

For the sake of time, we're only going to look for proof sketches in recitation. It’s
alright to not write down everything, as long as you understand it. In your homework,
we’ll be looking for full-fledged formal proofs.

Task 1

Jania and Allie are playing a very fun game. They have some number of fossils on
a table that they can pick from. They take turns picking one, two, or three fossils.
Whoever has to pick the last fossil loses. If Allie goes second, prove that she always
has a winning strategy if the number of fossils equals 4k + 1 for some £ > 0.

Solution:
Proof

Let us define P(n) as the predicate that Allie will win if the game starts with 4n + 1
fossils, for integer n > 0.

Base case. For n = 0, the number of fossils is 1 which forces Jania to perform the
last task and lose.

Inductive Hypothesis: Assume P(k), that Allie can win if the number of fossils
is 4k + 1 when £ > 0.

Inductive Step: We want to prove P(k) IMPLIES P(k+1). The number of fossils
is now 4(k+1)+1 = 4k+5. Jania can choose to pick either 1, 2, or 3 fossils, making
the pile 4k + 4, 4k + 3, and 4k + 2, respectively. Allie can then finish picking off 3, 2,
or 1 fossils, respectively, which will make the list of size 4k + 1. Given our inductive
hypothesis, Allie will win, and now has a winning strategy.

Conclusion: By induction, having proven P(0) and P(k) IMPLIES P(k+1), if the
number of fossils equals 4k + 1 for some k, then the second player has a winning
strategy.

Task 2

Use induction to prove the following generalization of one of De Morgan’s laws:

(pL Ap2 AP3s Ao ADP) =PV P VoV py

forn € Z*,n > 2.
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Solution:
Claim: =(p1 Apa Aps A ... Apy) =—p1V-pa V...V —p, forneZ n>2.

Predicate: Define P(n) as the property that =(p; Apa Aps A ... Apy) = —p1 V —py V
.. V. =, for n predicates.

We will show that P(n) holds true for any integer n > 2.
Base case: We prove P(2).

—(p1 A pa) = —p1 V —pe. This is the simple form of one of De Morgan’s Laws that
has been previously proven. So, P(2) is true.

Inductive hypothesis: Assume P(k) is true for some k& € Z*, k > 2. That is,
“(PrAP2APs A Apr) = =p1V P2 VoV g

Inductive step: We will now prove P(k + 1). That is, we will show that —(p; A
P2AP3 A o Apk A1) = p1V P2 VoV ok V e

Let g =pr Apa A~ A py.

Then, ~(p1 Apa Aps A .. Apr A Dry1) = =(qk A Prsa)-

By Simple De Morgan’s law, =(qx A prt1) = —qx V —Pri1-

By the inductive hypothesis, =gz = =(p1 Apa A -+ Apg) = —p1 V —pa V -+ - V .

By substituting g, back in, we have that —(p1 A pa Aps A ... AP A Dpg1) = —p1 V
P2 V... VP V Dt

Therefore, P(k) implies P(k + 1).

Because the base case and inductive step are true, P(n) is true for alln € Z+, n > 2
by induction.

Checkpoint 1 — Call over a TA!
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Strong Induction

With standard induction under our belts, it’s time to look at a variant of it, strong
induction. In many ways, strong induction is similar to normal induction, as the
basic steps listed above are all the same.

Remember that our goal is to prove Vi > a, P(i). The difference is in the inductive
hypothesis. When using induction, we assume that P(k) is true to prove P(k + 1).
In strong induction, we assume that the particular statement holds at all the steps
from the base case to the kth step. Sometimes, we assume all of P(b), P(b+ 1), ...,
P(k) are true to prove P(k+ 1), where b is the base case. Note that we may need to
prove the base case for multiple values.

Why would we need to do that? Sometimes, you can’t just rely on the fact that P(k)
is true. Maybe you also need P(k — 1) to be true, or perhaps also P(k — 2), or even
P(k/2). While writing out your inductive step, if you realize that P(k) isn’t enough
to prove P(k + 1), odds are you need strong induction.

Multiple Base Cases?

Something to think about: If you need both P(k) and P(k—1), you also need multiple
base cases. Say you're trying to prove P(n) for n > 1. If you prove P(1) as your

base case, how can you show P(2) without P(0) in the inductive step? You’d have
to include both P(1) and P(2) as base cases.

And so, you naturally might ask...

Which method should we use?

With some standard types of problems (e.g., sum formulas) it is clear ahead of time
what type of induction is likely to be required, but usually this question answers
itself during the exploratory/scratch phase of the argument. In the induction step
you will need to reach the k + 1 case, and you should ask yourself which of the
previous cases you need to get there. If all you need to prove the k + 1 case is the
case k of the statement, then ordinary induction is appropriate. On the other hand,
you may realize that you need the two preceding cases (k—1 and k) or the full range
of preceding cases, to get to k + 1, in which case strong induction is needed.
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Example

Prove that every integer n > 2 can be written as a product of one or more prime
numbers.

Proof

Let P(n) be the predicate “n can be written as a product of one or more prime
numbers”. We will show that P(n) holds true for any integer n > 2.

Base case. The integer 2 is prime, so it is a product of exactly one prime number
(itself). Therefore, P(2) is true.

Inductive Hypothesis. Assume the inductive hypothesis, that for a particular in-
teger k, P(i) is true for all 2 <i <k.

Inductive Step. We must prove P(k+ 1), that k+ 1 is the product of one or more
prime numbers. k 4+ 1 is either prime or composite. If it is prime, then it is
the product of exactly one prime number (itself), and P(k + 1) is true. If it
is composite, then by definition it is the product of two factors, k + 1 = ab,
where a and b are integers > 2.

Since a and b are both greater than 1, they must also both be less than k + 1.
By the inductive hypothesis, a and b can each by written as a product of one
or more primes. But since k£ + 1 = ab, we can combine these two products to
express k + 1 as a product of primes, so P(k + 1) is true.

Thus inductive hypothesis and inductive step imply:

=.

||
N

Vi, (/\ P(j)) — P(k+1)

J

Conclusion. Since P(2) is true and P(2), ..., P(k) together imply P(k+ 1), P(n) is
true for all integers n > 2.
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Task 3

1. In the above example proof, why did we only need one base case?

Solution:

We had the guarantee that a and b are between 2 and k, so there was no risk
of them being less than our highest base case.

2. In which step of the induction proof is there a difference between ordinary and
strong induction? What is the difference?

Solution:

Inductive Hypothesis! (see description of strong induction above). In weak
induction, we only assume that particular statement holds at k-th step, while
in strong induction, we assume that the particular statement holds at all the
steps from the base case to the k-th step.

Note: A common incorrect answer here is ‘multiple base cases for strong in-
duction .

Task 4

1. Prove by strong induction that every amount of postage that is at least 15
cents can be made from 4-cent and 5-cent stamps.

Hint: You’ll need 4 base cases.

Solution:
Proof

Let P(n) be the predicate that a n-cent postage, where n > 15, can be made
from 4-cent and 5-cent stamps.

Base case. If the postage is 15 cents, we can make it with three 5-cent stamps.
If the postage is 16 cents, we can make it with four 4-cent stamps. If it is 17,
we can use three 4-cent stamps plus one 5-cent stamps. If it is 18, we use two
4-cent stamps and two 5-cent stamps.

Inductive Hypothesis. Assume the inductive hypothesis, that for a particu-
lar integer k, P(7) is true for all 15 <i < k, where k is an integer with k& > 18;
in other words, suppose that we have shown how to construct postages for
every value from 15 up through &.

Inductive Step. We must prove P(k+1), that a postage of k+1 cents can be
made from 4-cent and 5-cent stamps. Since we have already proved the base
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cases up through 18 cents, we will assume that £k +1 > 19. Since £+ 1 > 19,
(k+1)—4 > 15. So, by the inductive hypothesis, we can construct postage
for (k + 1) — 4 cents using m 4-cent stamps and n 5-cent stamps, for some
natural numbers m and n. In other words, (k+ 1) —4) = 4m + 5n. But then
k+1=4(m-+ 1)+ 5n. So we can construct k+ 1 cents of postage using m + 1
4-cent stamps and n 5-cent stamps, which is what we needed to show.

Conclusion. Since P(15), P(16), P(17), and P(18) is true and P(15), ..., P(k)
together imply P(k + 1), P(n) is true for all integers n > 15.

Notice that we needed to directly prove four base cases, since we needed to
reach back four integers in our inductive step. It’s not always obvious how
many base cases are needed until you work out the details of your inductive
step.®.

“https://courses.engr.illinois.edu/cs173/sp2009/Lectures/lect_18.pdf

2. Why do we need to use strong induction for this proof? In other words, why
can’t we just ’assume that P(k) is true’ in our induction hypothesis?

Solution:

Our proof relies on the observation that given postage for k + 1 cents, we can
set aside a 4-cent stamp and be left with £k +1 —4 = k — 3 cents of postage to
make. As such, we assume that P(k — 3) is true in our inductive step, so using
an inductive hypothesis P(k) — P(k + 1) is not sufficient, and instead we use
strong induction!

3. In part 1, we proved by strong induction that every amount of postage that is
at least 15 cents can be made from 4-cent and 5-cent stamps.

Prove the same claim using ordinary induction.

Solution:
Proof

Let P(n) be the predicate that a n-cent postage, where n > 15, can be made
from 4-cent and 5-cent stamps.

Base case. If the postage is 15 cents, we can make it with three 5-cent stamps.

Inductive Hypothesis. Assume the inductive hypothesis, that for a partic-
ular integer k > 15, P(k) is true. In other words, we assume that a postage of
k cents can be made from 4-cent and 5-cent stamps.

Inductive Step. We must prove P(k + 1), that a postage of k + 1 cents can
be made from 4-cent and 5-cent stamps.
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By the inductive hypothesis, there is a way to make postage of k cents using
only 4-cent and 5-cent stamps. We can then make postage for k 4+ 1 cents in
one of two ways:

e Case 1: The postage for k cents includes a 4-cent stamp. In this case,
we can make k + 1 cents of postage by removing the 4-cent stamp and
replacing it with a 5-cent stamp, which will increase the overall amount
by 1 cent. In other words, we get £k —4 4+ 5 = k + 1 cents of package.

e Case 2: The postage for k£ cents does not include a 4-cent stamp. In this
case, the postage for k£ cents must contain at least three 5-cent stamps
(since k > 15). We can then make k + 1 cents of postage by removing
the three 5-cent stamps and replacing them with four 4-cent stamps,
which will increase the overall amount by 1-cent. In other words, we get
k—3-5+4-4=Fk+1 cents of package.

Since one of these cases must occur, then we can make k + 1 cents of postage,
which shows that P(k + 1) is true.

Conclusion. Because P(1) is true, and because, for all k, P(k) implies P(k +
1), we conclude that P(n) is true for all integers n > 1.

4. Optional: Are strong and ordinary induction equivalent?

Solution:

Yes, strong and ordinary induction are logically equivalent! See this website
for the proof of their equivalence.

However, sometimes it may be easier to use one method over the other. The
section ”Which method should we use?” above also discusses this briefly.

Optional: Task 5

Consider a candy bar with n squares in a row. Suppose we want to break this candy
bar up into individual squares. How many breaks should we perform?

Claim: For all n > 1, any sequence of n — 1 breaks will reduce a candy bar of
n squares into single squares. This means it doesn’t matter what order we break
squares in: think about this fact for your inductive step!

Prove this claim by (strong) induction.

10


http://mathcenter.oxford.emory.edu/site/math125/strongInductionEquivalence/
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Figure 1: A Delicious Candy Bar

Solution:

Let P(n) be the predicate that, given a bar of n squares, any sequence of n— 1 breaks
will reduce it to single squares.

Base Case: P(1): Given a bar with 1 square, 0 breaks leaves us with one square.
Hurrah!

Inductive Hypothesis: Let k& be some arbitrary positive integer. For all positive
integers i < k, assume P(7). That is, assume that for a bar of length 7, any sequence
of i — 1 breaks will reduce it to single squares.

Inductive Step: Consider a candy bar with k£ + 1 squares. Make some break. Let’s
say we make it after the pth square, where p is some positive integer. Then, we have
two candy bars, one of length p, the other of length k +1—p. Bothpand k+1—p
are positive integers less than k£ + 1, as we are breaking the bar into two positive
pieces. By our inductive hypothesis, we know that it takes p — 1 breaks to break up
the first, and (k + 1) — p — 1 to break up the second. These breaks result in a total
off (p—1)+((k+1—p)—1) =k+1—2 breaks. We then have that our initial break
plus this number of breaks is: 14 (k+1—2) = (k+ 1) — 1 breaks, as needed. That
shows P(k + 1) is true.

Conclusion: As P(1) is true and for any positive integer k, and P(1),....P(k)
imply P(k + 1), P(n) is true for all positive integers n.

Required: Feedback Form
Congrats on finishing Recitation 5—it’s remarkable how much we learned about proof
techniques, logic, set theory, functions and relations, and induction!

The last part of recitation is to fill out this mandatory feedback form, which should
be completed individually. You will be checked off only when the TA confirms that
you have submitted (show the ”Your response has been recorded” page to the TA).

11
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Your responses will be super helpful as we continue to improve the course, and thank
you for an amazing first few weeks of 22!

Checkoff

If you are done, call over a TA to get checked off. There’s a bonus problem below
while you wait.

Lastly, just a reminder that you can direct conceptual questions to your TAs during
recitation as well!

Optional Challenge: Green-Eyed Aliens

There are n (where n is 2 or greater) aliens sitting in a circle so that every alien can
see every other alien.

Every alien has green eyes. However, no alien knows its own eye color. Additionally,
the aliens cannot talk, so they cannot inform each other of the fact that they have
green eyes. However, if an alien ever figures out their own eyes are green, they will
leave the spaceship that night.

On Day 1, Professor Lewis comes and tells the circle of aliens that at least one of
them has green eyes. Prove that, on the nth night, all n aliens will leave the ship.

Solution:
Let P(n) be the predicate that n aliens will leave on the nth night.

Base Case: If there are 2 aliens, then it takes them two nights to figure out they
both have green eyes. To arrive at this conclusion, consider one of the aliens, D.
On the first day, D sees that the other alien, D’ has green eyes. D’ does not know
that D’ has green eyes, but they see that D does. Hence, neither D nor D’ realizes
on the first day that they themselves have green eyes. On the second day though,
D sees that the other alien, D', did NOT realize that D’ has green eyes. D’ would
have come to this conclusion if D’ could see D’s eyes were not green given Professor
Lewis’s claim that at least one of them has green eyes. Hence, D knows that D has
green eyes! D’ also knows that D’ has green eyes by the same reasoning! (These
aliens are strong at logic.) So, on the second night, they both leave. Thus, P(2) is
true.

Inductive Hypothesis: Now, for some arbitrary integer k£ > 2, assume P(k). That
is, it takes k nights for k aliens to leave.

12
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Inductive Step: Consider the case where there are k + 1 aliens and consider what
one individual alien is thinking. This one alien sees k aliens with green eyes. There-
fore, if this alien does not have green eyes, they would expect the other aliens to
leave after k nights since they can see them, by the TH. Since they don’t, this alien
realizes that their eyes are also green and leaves on night k + 1. Thus, P(k + 1) is
true.

Conclusion: As P(2) is true and, for any integer £ > 2 P(k) implies P(k+1), P(n)
holds for all integers n > 2.

13



