
CSCI 0220 Discrete Structures and Probability Lewis

Recitation 4

Relations and Functions

Part 1: Relations

Definitions

Defn 1: A binary relation R : A → B is defined on a domain A, co-domain B, and
a graph that is a subset of the Cartesian product A× B (called the graph of R). If
R : A → B, we say R maps A to B.

Given a ∈ A and b ∈ B, if R(a, b) is true then we say ‘a is related to b by R’, and
write a R b, meaning (a, b) is in the graph of R.

Defn 2: A relation on a set A is R : A → A.

Defn 3: An equivalence relation is a relation that is reflexive, symmetric, and tran-
sitive.

Defn 4: A relation R on A is reflexive if ∀a ∈ A, (a, a) ∈ R.

Defn 5: A relation R on A is symmetric if ∀(a, b) ∈ R, (b, a) ∈ R. An equivalent
definition is that a relation is not symmetric if ∃(a, b) ∈ R such that (b, a) /∈ R.

Defn 6: A relation R on A is antisymmetric if ∀a, b ∈ A, (a, b) ∈ R and (b, a) ∈ R
implies that a = b.

Defn 7: A relation R on A is transitive if ∀(a, b), (b, c) ∈ R, (a, c) ∈ R. An equivalent
definition is that a relation is not transitive if ∃(a, b), (b, c) ∈ R such that (a, c) /∈ R.

Defn 8: Let R be an equivalence relation on A. Then, the equivalence class of
a ∈ A, denoted [a]R, is {a ∈ A | a R a}. That is, [a]R is all of the elements to which
a is related.

Equivalence Relations

What does it mean for two things to be essentially “the same”? It can depend on
context. Say you’re trying to organize your closet by color. While a red shirt and
red boots are distinct items, we may want to consider them as similar for the sake
of organization. The relation here is sharing the same color.

Let’s run through the intuition of what makes this an equivalence relation:

• Reflexive: An item has the same color as itself. For example, a pink bow is
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“related” to itself because it is pink (same color).

• Symmetric: If item one is the same color as item two, then item two is also the
same color as item one. For example, if a yellow blouse is the same color as a
yellow skirt, then we know that the yellow skirt is the same color as the yellow
blouse.

• Transitive: If item one is the same color as item two, and item two is the same
color as item three, then item one must be the same color as item three. For
example, if a pair of blue jeans is the same color as a blue dress, and a blue
dress is the same color as a blue shirt, then blue jeans are the same color as a
blue shirt.

Equivalence relations give us a way of saying that two elements of a set are ‘similar’,
without having to be equal.

An equivalence relation partitions the elements of the domain into sets — these sets
are the equivalence classes! In the context of the previous example, the domain (your
closet) is partitioned into equivalence classes (the sets of items that share the same
color). All red items form an equivalence class, all blue items form another, and so
forth.

Formally, a partition of a set is a grouping of its elements into non-empty subsets,
in such a way that every element is included in exactly one subset.

As we formalize these concepts mathematically, it will be useful to refer back to the
rigorous definitions above to prove these three properties.

Task 1

1. Consider the set A = {1, 2, 3}. In the following questions, all relations are on A.
It may be helpful to draw out a diagram of each relation.

a. R = A × A. List out the elements of R. Is R an equivalence relation? If so,
state its equivalence class(es).

b. R = {(1, 2), (2, 1)}. Is this relation transitive?
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c. R = {(1, 2), (2, 1), (2, 2), (1, 1)}. Is this relation reflexive? Symmetric? Transi-
tive?

d. If the relation in question iii is not an equivalence relation, can you add one
pair to it and make it an equivalence relation? Write the equivalence classes
of the new relation.

2. Let A = {1, 2} and answer to the following questions.

a. What is the equivalence relation on A with the smallest number of equivalence
classes possible?

b. What is the equivalence relation on A with the largest number of equivalence
classes possible?

c. Is R0 = {} a relation on A?

d. Is R0 symmetric? Is it antisymmetric? Why or why not?
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e. Is R0 transitive? Why or why not?

f. R0 is not an equivalence relation. Why?

3. Suppose R is an equivalence relation on S, and R = {}. What is S?

4. Consider the set B of all students at Brown. For each of the following relations
on B, state whether they are reflexive, symmetric, antisymmetric, transitive, or
some combination of them. If it is an equivalence relation, then determine the
equivalence classes of the relation.

a. Two students are related if they have the same astrology sign.

b. s1 and s2 are students and (s1, s2) ∈ R if s1 is younger than or the exact same
age as s2. (You can assume no students were born at the exact same time.)
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c. Two students are related if they are studying anthropology.

d. Two students are related if they go to Brown.

Checkpoint 1 — Call a TA over!
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Part 2: Functions

Definitions

Defn 1: A relation R : X → Y is a function if for every x in the domain X, x is
mapped to one and only one y in Y , the codomain. Note that in the book this is
called a total function, and function refers to a partial function, where for every x in
the domain X, x is mapped to zero or one y in the codomain Y . In this class, we will
use function to mean total function and partial function to mean partial function.

Defn 2: The range of a function f consists of all members of the codomain of f
that are mapped to by some member of the domain of f . It is the image of the
domain.

Defn 3: f : X → Y is injective (one-to-one) if, for every y ∈ Y , there is at
most one x ∈ X such that f(x) = y. Equivalently, for any x, y ∈ Y we have f(x) =
f(y) =⇒ x = y, and you can also use its contrapositive x1 ̸= x2 =⇒ f(x1) ̸= f(x2).

Defn 4: f : X → Y is surjective (onto) if, for every y ∈ Y , there is at least one
x ∈ X such that f(x) = y. For surjective functions, the range is equal to co-domain.

Defn 5: f : X → Y is a bijection if it is both an injection and surjection.

Task 2

Let A be the set {1, 2, 3}. Consider the following relation on A, R1 = {(1, 2), (2, 1)}.

1. Is R1 a function?

Now, consider R2, another relation on A: {(1, 2), (2, 1), (3, 2)}.

1. Is R2 a function?

2. If R2 is a function, what is its codomain? How about its range?
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Task 3

Consider these diagrams that visualize a relation R : A → B. The diagrams have
two sets of dots, one for A and one for B, and they have an arrow from a to b in
whenever (a, b) ∈ R.

Match each of the five diagrams, labeled A–E, with one of these five descriptions
below:

1. Not a function

2. A function that is neither surjective nor injective

3. A surjective function that is not injective

4. An injective function that is not surjective

5. A bijective function — both surjective and injective

Optional Checkpoint (recommended if queue is short) — Call a TA over!
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Task 4

Consider the following functions and determine if the given function is an injection,
surjection, and/or bijection.

x

y

(a) f(x) = x2

x

y

(b) g(x) = x/2

x

y

(c) h(x) = x3 − x

Discuss your answers!

a. f : R → R, f(x) = x2

b. g : R → R, g(x) = x
2

c. h : R → R, h(x) = x3 − x

d. Question: All of the above functions are defined on R. Consider their graphs in
the coordinate system. Which of the following implies surjectivity, which implies
injectivity, and which implies neither?

(1) any vertical line intersects the graph at most once

(2) any horizontal line intersects the graph at most once

(3) any vertical line intersects the graph at least once

(4) any horizontal line intersects the graph at least once
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e. Recall the functions defined in parts a-c. Is f ◦ h : R → R surjective and/or
injective? (Use a graphing calculator if you need to.)

f. Is h ◦ f : R → R surjective and/or injective?

g. Let f : R → Z give as output the greatest integer less than or equal to x,
denoted as the floor function f(x) = ⌊x⌋. For instance, f(3.5) = 3, f(3) = 3, and
f(π) = 3.1

h. f : Z → Z
f(x) = ⌊x⌋

i. Optional: f : Brown University Students → Countries in the World

f(student) = country where student is from

j. Optional: f : First Year Students → First Year Dorms

f(student) = dorm that student lives in

1Note that we can similarly define the ceiling function f : R → Z that gives as output the
smallest integer greater than or equal to x, denoted the ceiling function f(x) = ⌈x⌉. For example,
hf(3.5) = 4, f(3) = 3, and f(π) = 4.
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Task 5

Given sets A and B, a function f : A → B is injective if

∀a, b ∈ A, f(a) = f(b) → a = b.

(This is a formalization of the intuitive “arrow counting” definition given in lecture.)

Given sets A, B, and C, and functions g : B → C and f : A → B, we define the
composition of g and f , written g ◦ f : A → C, by (g ◦ f)(x) = g(f(x)) for all x ∈ A.
In other words, to apply g ◦ f to an argument x, first apply f to x, and then apply
g to the result. (Beware the order of operations!)

Let S be a set and f : S → S be a function. Prove that f is injective if and only if
f ◦ f is injective.

Once you’re done, pick a point a few sentences into your proof. (Don’t pick the very
beginning or very end.) Sketch out the “proof state” at this position, informally like
you might see in Lean: what are the hypotheses in your context at this point? What
is your goal? (Do you have any additional goals? If so, what are the contexts there?)

Optional Task 6

a. If a function f : X → Y is injective, what can we say about the cardinalities of
X and Y ? Try making some diagrams where X has more elements than Y , fewer
elements than Y , or the same number of elements as Y . When are you able to
create an injection, and when are you not?

b. If a function f : X → Y is surjective, what can we say about the cardinalities of
X and Y ? Again, you might want to draw out some examples.
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c. Based on what you’ve found in the previous two questions, if a function f : X → Y
is bijective, what can we say about the cardinalities of X and Y ? When can we
create a bijection between two sets, and when can we not?

Checkoff - Call a TA over!
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