Recitation 3

Set Theory and Set Algebra

Set Theory

Defn 1: A set is a collection of objects with no repetition or order.
Defn 2: B is a subset of A if every element in B is also in A. This is written as $B \subseteq A$.

Defn 3: The integers are the set $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$. The non-negative integers (also called the natural numbers) are the set $\mathbb{N}=\{0,1,2, \ldots\}$.

Defn 4: A number n is even if $n=2 k$ for some $k \in \mathbb{Z}$. A number n is odd if $n=2 k+1$ for some $k \in \mathbb{Z}$.

Defn 5: A number n is rational if $n=\frac{a}{b}$ for some $a, b \in \mathbb{Z}$, where $b \neq 0$. The set of rational numbers is denoted as \mathbb{Q}.
Defn 6: $\mathcal{P}(A)$, called the power set of A, is the set of all subsets of A.
Defn 7: $A \cup B$ denotes the union of sets A and B. This contains all the elements from A, and all of the elements from B.

Defn 8: $A \cap B$ denotes the intersection of sets A and B. This contains only the elements that appear in both of the sets.
Defn 9: $A \backslash B$ denotes the difference of sets A and B. This contains elements that appear in A but not B.
Defn 10: \bar{A} denotes the complement of A relative to some universal set $U . \bar{A}=$ $U \backslash A$, that is, it is everything except what is in A.
Defn 11: $|A|$ denotes the cardinality of A, which is a count of the number of elements contained in A.

Defn 12: The symbol \forall means for all.
Defn 13: The symbol \exists means there exists.

Task

a. True or False: A is an arbitrary set. Answer true only if the statement is always true. That is, answer true only if for any possible set A, the statement is true.
i. $A \subseteq A$
ii. $\} \subseteq A$
iii. $\} \in A$
b. True or False: $\mathbb{N} \subseteq \mathbb{Z}$
c. $\{0,1,9\} \subseteq \mathbb{N}$
d. True or False: $\{-1.5,9\} \subseteq \mathbb{Z}$
e. i. $\mathbb{Q} \cap \mathbb{N}=\mathbb{N}$
ii. $\mathbb{Q} \cup \mathbb{N}=\mathbb{R}$
f. S is the set of flying dinosaurs that lived during the Cretaceous period. G is the set of all dinosaurs that lived during the Cretaceous period. The Pterodactyl was a flying dinosaur that lived during the Cretaceous period.
True or False:
i. $S \subseteq G$
ii. Pterodactyl $\subseteq S$
iii. Pterodactyl $\in S$
iv. $\{$ Pterodactyl $\} \subseteq G$
g. True or False: If $A=\{1,2,4\}$ then $\{2,4\} \in \mathcal{P}(A)$
h. True or False: A is a set, and $\mathcal{P}(A)$ is the set of all subsets of A. Answer true only if the statement is always true.
i. $A \in \mathcal{P}(A)$
ii. $A \subseteq \mathcal{P}(A)$
iii. $\emptyset \in \mathcal{P}(A)$
iv. $\emptyset \subseteq \mathcal{P}(A)$
i. In each of the following Venn diagrams, A, B, and C are sets and are assumed to be subsets of a universal set (denoted by the rectangle). Write a set algebraic expression (i.e. one involving union, intersection, difference, and complement) in terms of A, B, and C for each shaded in region.

j. Optional: Call a the cardinality of A and b the cardinality of B. Call s the cardinality of $A \cap B$. For the third picture, what is the cardinality of the set formed from the expression you derived?

Task 1

Define the following sets

$$
\begin{aligned}
& A=\{\varnothing, 0,\{\varnothing\},\{0, \varnothing\}\} \\
& B=\{\varnothing,\{\varnothing\},\{0, \varnothing, 1\}\} \\
& C=\left\{x \mid \exists y \in \mathbb{Z} \text { s.t. } y^{2}=x, x<10\right\} \\
& D=\{a, b, c, d, e\} \\
& E=\{c, d, e\} \\
& F=\{d, e, f, g\}
\end{aligned}
$$

a. Find the following sets:
i. $A \cup B$

ii. $A \cap B$
\qquad
iii. $A \backslash B$

iv. $\mathcal{P}(B)\left(=2^{B}\right)$, the power set of B
\square
v. $C \backslash(A \cup B)$
\square
vi. $\{x|x \in B,|x| \notin C\}$
\square
vii. $A \times E$
\square
viii. Optional: $(D \times E) \backslash(E \times F)$
\square
ix. Optional: $(D \backslash E) \cap(D \cap E)$
\square
b. Find the cardinalities of the following sets:
i. C
\square
ii. $A \times B$

iii. $\mathcal{P}(A \cup B)$
\square
iv. $F \backslash(D \cap E)$

v. Optional: $\mathcal{P}(\mathcal{P}(\varnothing))$
\square
Checkpoint 1 - Call over a TA!

Set Equivalence

Set Element Method

Defn 1: Two sets S and T are equal if and only if they have the same elements:

$$
S=T \Longleftrightarrow(\forall x: x \in S \Longleftrightarrow x \in T)
$$

Defn 2: S and T are equal if and only if both S is a subset of T and T is a subset of S.

From these two definitions, we can construct our set-element method for proving set equalities; that is, we show that two sets are equal if and only if every element of S is also an element of T and every element of T is also an element of S.

In other words, to prove that one set is a subset of the other, we can show that $S \subseteq T$ for arbitrary sets S and T using the following steps:

1. Let x be an element of S .
2. Prove that x is an element of T .
3. Conclude that $S \subseteq T$.

Example

Claim: $\quad A \cap(A \cup B)=A$.
Proof: We show that both $A \cap(A \cup B) \subseteq A$ and $A \subseteq A \cap(A \cup B)$.

1. We will first prove our sub-claim that $A \cap(A \cup B) \subseteq A$.

Consider any $x \in A \cap(A \cup B)$. This means that $x \in A$ and $x \in A \cup B$. In particular, we know that $x \in A$. Thus, we have shown that $A \cap(A \cup B) \subseteq A$.
2. We will then prove the second sub-claim that $A \subseteq A \cap(A \cup B)$.

Consider any $x \in A$. Then, $x \in A \cup B$. Thus, we know that $x \in A$ and $x \in A \cup B$, which can be rewritten as $x \in A \cap(A \cup B$. This shows that $A \subseteq A \cap(A \cup B)$.

Therefore, $A=A \cap(A \cup B)$.
Now, let's practice!

Task 2

For each of these statements, either prove (using the 'set element' method) or disprove the claim.

Hint: Use a counterexample to disprove a claim!
a. For any two sets A and $B, \mathcal{P}(A \cap B)=\mathcal{P}(A) \cap \mathcal{P}(B)$.
\square
b. For any two sets A and $B, \mathcal{P}(A \cup B)=\mathcal{P}(A) \cup \mathcal{P}(B)$.

Task 3

a. Let A and B be subsets of some universal set. Then $A \backslash(A \backslash B)=A \cap B$.
\square
b. Optional: Let A and B be the following sets:

$$
\begin{aligned}
& A=\{6 n: n \in \mathbb{Z}\} \\
& B=\{2 n: n \in \mathbb{Z}\} \cap\{3 n: n \in \mathbb{Z}\}
\end{aligned}
$$

Prove that $A=B$.
\square
c. Optional: Prove that $A \times(B \cup C)=(A \times B) \cup(A \times C)$.

Checkpoint 2 - Call over a TA!

Set Algebra

We can also prove that two sets are equivalent using set algebra. More concretely, we can use the stated laws of set algebra to convert one side of the equation to the other (or convert both sides to an identical expression).
Example (from the sample proofs on our website):
Prove that $(A \cap B) \cup(A \backslash B)=A \cap(B \cup(A \backslash B))$.

$$
\begin{aligned}
& (A \cap B) \cup(A \backslash B) \\
& =(A \cap B) \cup(A \cap \bar{B}) \\
& =(A \cap(B \cup \bar{B}) \\
& =A \cap U \\
& =A \\
& =A \cap(A \cup B) \\
& =A \cap(B \cup A) \\
& =A \cap((B \cup A) \cap U) \\
& =A \cap((B \cup A) \cap(B \cup \bar{B}) \\
& =A \cap(B \cup(A \cap \bar{B})) \\
& =A \cap(B \cup(A \backslash B))
\end{aligned}
$$

(Distribution)
(Complement Law)
(Identity Law)
(Absorption)
(Commutivity)
(Identity Law)
(Complement Law)
(Distribution)
(Set Difference Law)

Therefore, the equality holds since all these steps are biconditionally true.

Task 4

a. Let A and B be subsets of some universal set U. Prove that $(A \cap \bar{B}) \cup B=A \cup B$ using set algebra.

b. Let A and B be subsets of some universal set U. Prove that $(A \backslash B) \cup(B \backslash A)=$ $(A \cup B) \backslash(A \cap B)$ using set algebra.
\square
c. Optional: Show that $(A \backslash B) \backslash(B \backslash C)=A \backslash B$.

Checkoff - Call over a TA!

