
CSCI 0220 Lewis & Hershkowitz

Homework 6
Due: March 12, 2025

All homeworks are due at 11:59 PM on Gradescope.

Please do not include any identifying information about yourself in the
handin, including your Banner ID.

Be sure to fully explain your reasoning and show all work for full credit.

Problems marked with a * are problems which may appear on the midterm or final
with some modification.

Problem 1

For each of the statements below, determine if it is always true, sometimes true, or
never true. Justify your answers. To justify an “always” or “never” answer, write a
proof; to justify a “sometimes” answer, give one witness that makes the statement
true and one that makes the statement false, explaining these judgments.*

For example, the statement

Let a, b : N and suppose a | b. Then the greatest prime factor of b
divides a.

is sometimes true. It is true if a = 6 and b = 12, since 6 | 12 and the greatest prime
factor of 12 is 3, which divides 6. It is false if a = 2 and b = 6, since 2 | 6 but the
greatest prime factor of 6 is 3, which does not divide 2.

a. Let p, q, r, s : N be prime numbers and suppose that pq = rs. Then p = r and
q = s.

b. Let p : N be prime. Then p is relatively prime to every positive natural number
except for p itself.

c. Let a, b, c, n : N and suppose that 3ab ≡ 3ac mod n. Then b ≡ c mod n.

d. Let a, b,m, n : N be larger than 1 where n | m and a ≡ b mod m. Then a ≡ b
mod n.

e. Let a, b : N. Then gcd(1 + a, 1 + b) = 1 + gcd(a, b).

f. Let a, b, c, d, n : N be integers with c and d positive and n ≥ 2. If a ≡ b mod n
and c ≡ d mod n then ac ≡ bd mod n.
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Solution:

a. Sometimes. True if p = r = 2 and q = s = 3; false if p = s = 2 and q = r = 3.

b. Never. p is not relatively prime to 2p because gcd(p, 2p) = p > 1 since primes
are nonunits by definition.

c. Sometimes. True if a = b = c = n = 1 since 3 ≡ 3 (mod 1) and 1 ≡ 1 (mod 1);
false if b = 1 and a = c = n = 3 since 27 ≡ 9 (mod 3) (they’re both congruent
to 0) but 3 ̸≡ 1 (mod 3).

d. Always.

We have that there is integer k1 such that a − b = k1 ·m. Furthermore, since
n | m, we have that there is an integer k2 such that m = k2n. Thus, we have
a− b = k1 · (k2n) = (k1 · k2)n which shows that a ≡ b mod n.

e. Sometimes. True if a = b = 1 since gcd(1 + 1, 1 + 1) = 2 = 1 + gcd(1, 1); false
if a = 2 and b = 1 since gcd(3, 2) = 1 while 1 + gcd(2, 1) = 1 + 1 = 2.

f. Sometimes. If a = 1 and b = 1 then this is always true. However, if n = 3,
a = 2, b = 2 and c = 3, d = 6 we have ac = 8 ≡ 2 mod 3 but bd = 64 ≡ 1
mod 3.

2



CSCI 0220 Homework 6 March 12, 2025

Problem 2

For each of the following, find the multiplicative inverse for the given element by
using the extended Euclidean algorithm. If no inverse exists, explain why. *

a. 4 (mod 17)

b. 25 (mod 21)

c. 4 (mod 6)

For each of the following, find the positive integer values for x that satisfy the
congruence. If x has finitely many solutions, list all of them. If x has infinitely
many solutions, state that there are infinitely many solutions and list three of them.
*

d. x ≡ 3 (mod 4)

e. 2x ≡ 7 (mod 2)

f. 2 ≡ 6 (mod x)

Solution:

a. Extended Euclidean Algorithm: 4(mod 17)

a b q s t g
4 17 4 -4 1 1
1 4 4 1 0 1
0 1 0 1 1

This is the extended Euclidean algorithm table for 4(mod 17). After finding
that the greatest common divisor between 4 and 17 was 1, which means that
they are relatively prime, I went back up on the right side of the table to get
s = −4 and t = 1. We can now use the extended Euclidean algorithm to find
the multiplicative inverse for 4 (mod 17):

as+ bt = g → as = g − bt → as− g = −bt

as− g = −bt → b|(as− g) → as ≡ g(mod b)

If we plug in a = 4, s = −4, b = 17, and g = 1, we get the following:

4 ∗ (−4) ≡ 1(mod 17)
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This means that −4 (mod 17) is the multiplicative inverse of 4 (mod 17), so if
we solve for rem(17,−4) → 17 = (−1)(−4)+13, we get that the multiplicative
inverse of 4 (mod 17) is 13.

b. Extended Euclidean Algorithm: 25 (mod 21) To calculate the multiplica-
tive inverse, we know that 25 (mod 21) is equal to 4 (mod 21) if we do
25 − 21 = 4. Therefore, since we subtracted by a multiple of 21, 4 (mod 21)
and 25 (mod 21) will have the same multiplicative inverse:

a b q s t g
4 21 5 -5 1 1
1 4 4 1 0 1
0 1 0 1 1

This is the extended Euclidean algorithm table for 4(mod 21). After finding
that the greatest common divisor between 4 and 21 was 1, which means that
they are relatively prime, I went back up on the right side of the table to get
s = −5 and t = 1. We can now use the extended Euclidean algorithm to find
the multiplicative inverse for 4 (mod 21):

as+ bt = g → as = g − bt → as− g = −bt

as− g = −bt → b|(as− g) → as ≡ g(mod b)

If we plug in a = 4, s = −5, b = 21, and g = 1, we get the following:

4 ∗ (−5) ≡ 1(mod 21)

That means that −5 (mod 21) is the multiplicative inverse of 4 (mod 21) which
equals 16.

c. 4 does not have an inverse mod 6. For any x, 4x will be even, and thus rem(4x,
6) will be even. So this remainder cannot be 1.

d. Infinite. -1, 3, 7.

e. No solution.

f. 1, 2, 4.
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Problem 3

a. In a true mélange of classic animal-based math problems, a tortoise and hare
are playing a game that involves hopping around a circular track of lily pads.
At the start, they stand on the same lily pad. Then, every second, the slow
tortoise jumps one lily pad clockwise, while the swift hare jumps two lily pads
clockwise. They keep hopping until they once again end up on the same lily pad
as each other (regardless of whether it is the lily pad on which they started).

If there are n lily pads, where n is a positive natural number, determine, with
proof, the number of seconds it will take for the tortoise and hare to finish their
game.

HINT:Labelthelilypads0throughn−1.Canyouwritedownafunction
t(k)thatoutputsthenumberofthelilypadoccupiedbythetortoiseafterk
seconds?Whatabouth(k)forthehare?Whenarethesefunctionsequal?

As an example, here’s how the game would go on a track of four lily pads
(where t is the number of seconds elapsed, and T represents the tortoise and
H the hare):

T,H

t = 0

T

H
t = 1

H

T
t = 2

H

T

t = 3

T,H

t = 4

b. After completing their game, the tortoise and hare decide to play again on a
different track of lily pads. To get to that track, they’ll need to hop down a
short road, which is conveniently made of an even number of lily pads.

The tortoise and hare both start at the first lily pad on the road. They both
hop down the road, then begin hopping clockwise around the new track once
they reach it. Once either animal is on the track, it continues hopping circularly
around the track and never returns to the road. As before, the tortoise and hare
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keep hopping until they end up one the same lily pad. The setup is depicted
below with the road in blue and the track in red:

· · ·
. . .

As before, the tortoise hops one lily pad each second, while the hare hops two
lily pads per second.

Let r ∈ N+ be the number of lily pads on the road, and let c ∈ N+ be the
number of lily pads on the circular track. Show that, if c ≥ r, the tortoise and
hare will meet when exactly c seconds have elapsed and not before.

As an example, letting T denote the tortoise and H the hare, here’s how this
would play out with r = 2 and c = 4:

t = 0: T,H

t = 1: T H

t = 2: T H

t = 3: H

T

t = 4: T,H
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Solution:

a. Label the lily pads with the numbers 0 through n − 1 starting at the lily pad
on which the tortoise and hare stand at time t = 0. Since the tortoise moves
clockwise one lily pad each second, it will be on lily pad tmodn after t seconds,
while the hare, moving clockwise by two lily pads per second, will be on lily
pad 2tmodn after t seconds.

When the tortoise and hare are on the same lily pad, then, we will have t ≡ 2t
(mod n). The goal is to find the least nonzero value of t ∈ N that satisfies this
congruence.

By subtracting t from both sides, we are equivalently looking to satisfy 0 ≡ t
(mod n), which by the definition of congruence says that n | t, i.e., t = cn for
some c ∈ N. Thus, since the least nonzero value t of this form is obtained when
c = 1, we find that the reunion of the tortoise and hare occurs at time t = n.

b. First, observe that the tortoise and hare will not meet on the road. At any
time t ∈ N+ at which both animals are on the road, the tortoise is at the tth
lilypad and the hare is at the (2t)th one, and we know 2t ̸= t for any positive
natural t. So it must be that they meet on the circular track.

Label the lilypads on the track with the numbers 0, 1, . . . c − 1 proceeding
clockwise and beginning with the first lilypad after the road. The tortoise
reaches the circular track at time r, so since the two animals meet on the
track, they must meet at a time greater than or equal to r. Moreover, at t ∈ N
seconds after time r, the tortoise is at position tmod c.

We must now determine the hare’s position at time r + t. Since r is even,
the hare reaches lily pad 0 on the track at time r

2
. Since the hare hops 2 lily

pads each second, the hare’s position at time r + t is given (modulo c) by
2
(
r + t− r

2

)
= 2

(
t+ r

2

)
.

Thus, to find the first time when the tortoise and hare are at the same lily pad
on the track, we must find the minimal t ∈ N such that

t ≡ 2
(
t+

r

2

)
(mod c).

Expanding and separating variables, we must equivalently solve

0 ≡ t+ r (mod c).

Since c ≥ r, the smallest value of t ≥ 0 for which this is true is t = c − r. So
the tortoise and hare must meet at time r + t = r + (c− r) = c.
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Problem 4 (Mind Bender — Extra Credit)

You are playing a game with a hare in which you and the hare alternate turns. The
hare starts at 0 and each time it is the hare’s turn, it jumps some non-zero distance
b : N forward.

Each time it is your turn you can do one of two things: you can either (1) do nothing
or (2) use your length a : N lasso to pull the hare distance a backwards. This is a
very useful lasso which satisfies the property that a > b and gcd(a, b) = 1. You are
also allowed to pull the hare to negative positions.

Show that for any n : N, there is a series of actions (waits or pulls) you can always
choose so that the hare is at n at some point.

For example, if a = 9, b = 4 and n = 2 and the game proceeds as follows, the hare
is at 2 at some point: Hare: jumps to 4; You: pull the hare to −5; Hare: jumps
to −1; You: pull the hare to −10; Hare: jumps to −6; You: do nothing; Hare:
jumps to −2; You: do nothing; Hare: jumps to 2.

Solution:

Recall from class that there exist integers k1 and k2 such that

1 = k1 · a+ k2 · b. (1)

In particular, let r1 = a and r2 = b and consider the equations corresponding to
running Euclid’s gcd algorithm

r1 = q1r2 + r3

r2 = q2r3 + r4

r3 = q3r4 + r5

. . .

rk−2 = qk−2rk−1 + rk

where rk = gcd(a, b) = 1. Rearranging, we have

r3 = r1 − q1r2

r4 = r2 − q2r3

r5 = r3 − q3r4

. . .

rk = rk−2 − qk−2rk−1.

In other words, we can express ri for i ≥ 3 as an integer linear combination of ri−1

and ri−2. Repeatedly applying this, we have that we can express rk = gcd(a, b) = 1
as an integer linear combination of r1 = a and r2 = b, showing Equation 1.
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We next show that it is always possible to get the hare to either −1 or 1. Apply
Equation 1 and observe that, critically, since a > b we know |k1| < |k2|. We case on
whether k1 is negative.

• If k1 is negative then k2 must be positive. In this case, we let the hare jump
for k2 turns and for any −k1 of these turns we pull and for the remaining turns
we do nothing. Note that we only have enough turns to pull the hare since
|k1| < |k2|. By Equation 1 the hare will end at 1 after this.

• If k1 is positive then k2 must be negative. In this case, we let the hare jump
for −k2 turns and we pull for any k1 of these turns and do nothing for the
remainder. Again, note that we only have enough turns to pull the hare since
|k1| < |k2|. By Equation 1 times −1, we have that the hare will end at −1
after this.

Next, we show that it is always possible to get the hare to 1. In particular, either
we have a strategy to get the hare to 1 or we have a strategy to get the hare to −1.
In the former case we are done. In the latter case, if we repeat our strategy b − 1
times then the hare ends at −b+ 1 and after one more jump ends at 1.

Lastly, to get our hare to n, we can simply repeat our strategy to get the hare to 1
n-many times.
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