
CSCI 0220 Discrete Structures and Probability R. Lewis

Homework 2
Due: Wednesday, February 14, 2024

All homeworks are due at 11:59 PM on Gradescope.

Please do not include any identifying information about yourself in the
handin, including your Banner ID.

Be sure to fully explain your reasoning and show all work for full credit.

Problem 1

Welcome to Jurassic Park! We are about to open the park, but we need to make sure
that everyone that visits, no matter the language, can understand what is going on!
Translate the sentences below into formulas of first-order logic. Note: the sets listed
here can be used as domains of quantification. That is, you could write ∀x : D, ... to
quantify over all dinosaurs. You should not use any other domains of quantification.

• Sets:

– D: The set of dinosaurs

• Predicates

– T (x): “x is a Tyrannosaurus Rex”

– H(x): “x is an herbivore”

– L(x, y): “x and y live in the same area”

– <, ≤, ≥, and > have their familiar meanings when applied to numbers.

– = is always a predicate in first order logic!

• Functions

– w(x): the amount of food x eats per day

– h(x): the height of x

• Constants

– b: Bronchy, the most famous dino in the park

– r: Rocky, the most dangerous dino in the park

a. An herbivore and a non-herbivore live in the same area.

1



CSCI 0220 Homework 2 Wednesday, February 14, 2024

b. There is a Tyrannosaurus Rex that is taller than any other dinosaur.

c. No herbivore eats more food than Rocky.

d. Rocky is taller than Bronchy, but Bronchy is at least as tall as every herbivore
that lives in the same area as him.

e. Explain your answer in part b. Suppose that you had to argue this proposition
was true. How would you justify the claim? What proof rules would you use?

Solution:

Students may come up with alternative translations. These are fine if they are
logically equivalent.

a. ∃x,∃y : D,L(x, y) ∧H(x) ∧ ¬H(y)

b. ∃x : D,T (x) ∧ ∀y : D,¬y = x → h(x) > h(y)

c. ∀x : D,H(x) → w(x) ≤ w(r) or equivalently ¬∃x : D,H(x) ∧ w(x) > w(r)

d. h(r) > h(b) ∧ ∀x : D,H(x) ∧ L(x, b) → h(b) ≥ h(x)

e. Students should give an explanation of the first-order formula they came up
with.

An argument for this proposition would go as follows: I first use existential
introduction and exhibit some dinosaur d, of which I must now show that the
desired property holds. That property is a conjunction, so by and introduction,
I separately prove each conjunct. First, I show that T (d), i.e., that d is a T-rex.
Next, I show the right-hand conjunct, which is a universally-quantified formula.
To do this, universal-quantifier introduction says I let y be an arbitrary dinosaur
and show that the right-hand claim holds. This claim is an implication, so
implication introduction says I assume the antecedent (that y is distinct from
my specific dinosaur d) and show that the conclusion follows. The conclusion
is a numerical claim involving the > predicate, so I use arithmetical reasoning
to conclude that h(d) > h(y).

2



CSCI 0220 Homework 2 Wednesday, February 14, 2024

Problem 2

In this question, we will consider first order logic with the following symbols:

• Sets:

– N: the set of natural numbers

– List N: the set of expressions in Python representing lists of natural num-
bers.

• Predicates

– isSorted(x): “x is a sorted list”

– isPrefixOf(s, l): “the list s is a prefix of the list l”

• Functions

– reverse(l): the list whose elements are the elements of l in the opposite
order.

– sort(l): the list whose elements are the elements of l ordered from least
to greatest.

– drop(l): the list whose elements are the elements of l with the last one
removed.

• Constants

– All “list literals,” specific lists of natural numbers that we can write down
in full form: for example, [1, 3, 2], [55, 22], [0], []

a. For each of the following expressions, state whether it is a term, a formula,
both, or neither. Explain your answer for each item.

1. ∀x : List N, isSorted(sort(x))
2. sort([1, 2, 3]) ∧ drop([1, 2, 3])

3. ∃l : List N,¬isSorted(l) ∧ isSorted(drop(l))

4. sort(drop(reverse([22, 11, 44])))

5. ∀l : List N,∃m : List N, isPrefixOf(m, isSorted(l))

6. ∃x : List N, reverse(isSorted(x)) = x

b. Translate the following sentences of first order logic into English sentences. Try
to make your translations as natural as you can—think about how you might
say the property out loud if you were describing your own code.

3



CSCI 0220 Homework 2 Wednesday, February 14, 2024

1. ∀l : List N, isSorted(l) → isSorted(reverse(l))

2. ∃l : List N,∀m : List N, isPrefixOf(l,m)

3. ∀l : List N,¬isSorted(l) → ∃p : List N, (isSorted(p) ∧ isPrefix(p, l))

Solution:

a. 1. This is a formula. It expresses a proposition about the term sort(x).

2. This is not well formed. You cannot combine terms with a logical connec-
tive like ∧, which combines formulas.

3. This is again a formula, expressing a proposition about the existence of a
list with a certain property.

4. This is a term. It represents a list. We know it’s a term because it’s a
sequence of applications of functions, which produce terms.

5. This is not well formed. isPrefixOf is a predicate, but we have put a
formula as its second argument, where it expects a term.

6. This is not well formed. We have given a formula as the argument to the
function reverse, but should have given a term.

b. 1. The reverse of every sorted list is also sorted.

2. There is some list that is a prefix of every list. (This must be the empty
list!)

3. Every unsorted list has a sorted prefix. ALTERNATIVELY: for every list
l, if l is unsorted then there is a sorted list p that is a prefix of l.

4



CSCI 0220 Homework 2 Wednesday, February 14, 2024

Problem 3

This problem is a Lean question!

This homework question can be found by navigating to
BrownCs22/Homework/Homework02.lean in the directory browser on the left of your
screen in your Codespace. The comment at the top of that file provides more detailed
instructions.

You will submit your solution to this problem separately from the rest of the as-
signment. Once you have solved the problem, download the file to your computer
(right-click on the file in the Codespace directory browser and click “Download”),
and upload it to Gradescope.

5



CSCI 0220 Homework 2 Wednesday, February 14, 2024

Problem 4 (Mind Bender — Extra Credit)

This mindbender is a real thinker, so get ready! A note: we’re talking about propo-
sitional logic here, not first order logic. No quantifiers, no terms, just propositions
and connectives.

We’ve seen a few ways to determine if a formula of propositional logic is valid. One
way is to write out the full truth table, checking that every truth assignment makes
the entire formula true. Another way is to write the negation of the formula in
conjunctive normal form. If there are any clauses in the CNF expression, we can
read off a falsifying assignment, and hence the formula is not valid.

For this question, we want to think about testing for provability instead of for validity.
A formula φ is provable if there is a valid sequence of proof rules that will reduce a
goal of proving φ to a proof state with no goals remaining. Our goal is to design an
algorithm that will take in a propositional formula φ and, if the formula is provable,
produce such a sequence of proof rules as its output.

While you don’t need to think of this in terms of Lean, it can be helpful to visualize
it: given a propositional formula, the algorithm could output a Lean proof of the
formula.

Your task: think about how you would design an algorithm like this, and describe
it! We’re not expecting you to write any code. (Pseudocode is fine, if you’d like.)
Explain what information your algorithm bases its “decisions” on, and give some
examples of it “running” successfully.

Solving this task perfectly is hard, and we expect few or no fully correct answers to
this question. Think about what kinds of propositions your algorithm might fail to
prove, if any! Why is it unable to handle these?

Solution:

There are some key ideas that we were hoping to see in answers to this question.

• Approaches should be goal-directed. Apply intro rules to ∧, ↔, ¬, → goals
greedily.

• Can also destruct ∧, ∨, ↔ hypotheses greedily: “hypothesis-directed” ap-
proach.

• Note that a combination of these will be necessary: to be successful you can’t
work only on the goals, or only on the hypotheses.

• Distinguish “safe” vs “unsafe” moves. For example: for an “or” goal, picking

6



CSCI 0220 Homework 2 Wednesday, February 14, 2024

a side can lose information, so this is unsafe. Should be done with some kind
of strategy/backtracking plan.

• Modus ponens is also interesting. Using it in the “apply” (goal-directed) style
is unsafe. It can be used greedily in the “have” (hypothesis-populating) style.

• Very subtle point, great if anyone picks up on it: proof by contradiction (in
the classical sense: assuming ¬p and showing a contradiction to prove p) com-
plicates things! This rule is neither goal nor hypothesis directed.

• A rough strategy sketch could be this: do all of the safe unpacking/rearranging;
then do unsafe case splits, backtracking as necessary; greedily apply modus po-
nens throughout to saturate context; if all else fails, try proof by contradiction
and recurse.

This isn’t fully formed, but gets the rough idea across.

Brute-force approaches that didn’t offer any significant theoretically-motivated in-
sights received no credit.

7


	Problem 1
	Problem 2
	Problem 3
	Problem 4 (Mind Bender — Extra Credit)

