
CSCI 0220 Discrete Structures and Probability Lewis

Recitation 9

Expectation and Variance

Expected Value

Intuitively, the expected value is the weighted average of values, kind of a mass center
of the probability distribution.

More formally, the expected value of a random variable is denoted E[X] and is defined
as

E[X] =
∑
s∈S

X(s) Pr(s) =
∑

r∈X(S)

rPr(X = r).

We define the conditional expected values as follows: Given that event E has occurred,
the expectation of random variable X is

E[X | E] =
∑

r∈X(S)

rPr(X = r | E). (1)

Moreover, the linearity of expectation can be very useful in calculating expected
value: Given that Z, X, Y are three random variables defined on a sample space
S and a and b are two real numbers such that Z = aX + bY , we know that
E[Z] = aE[X] + bE[Y ] must be true.

Let’s practice this through a task:

Task 1

Tim and Joe are playing a game. They flip a fair coin 3 times. When the coin is
heads, Joe pays $1 to Tim; and when the coin is tails, Tim pays $1 to Joe.

a. Let Gi be a random variable representing what Tim gains on the i-th round. For
instance, G3 = −1 if the coin is tails.

What is the expected value of Gi?

Since Pr(Gi = 1) = 1
2
and Pr(Gi = −1) = 1

2
, E[Gi] =

1
2
− 1

2
= 0.

b. Let G be a random variable that represents Tim’s total gain in this game. What
is the expected value of G?
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E[G] = E[G1] + E[G2] + E[G3], where Gi is the expected gain from flip i. We
already know that E[Gi] = 0, so E[G] = 0 + 0 + 0 = 0 as well.

c. What is the expected value of G if the coin is biased and the probability of heads
is p? in other words, generalize your solution from part b in terms of p.

Now, E[Gi] = p · 1 + (1 − p) · (−1) = p − 1 + p = 2p − 1. Thus, E[G] =
E[G1] + E[G2] + E[G3] = (2p− 1) + (2p− 1) + (2p− 1) = 6p− 3.

d. Tim and Joe are still using the biased coin from part c. Let H1 be the event that
the first coin is heads. What is E[G|H1]?

E[G | H1] = 1 + (2p− 1) + (2p− 1) = 4p− 1.

G1 is 1 from the first round guaranteed, and the other terms are from part c.

e. Use your answers to calculate E[G] and E[G | H1] when p = 0.7.

E[G] = 6p− 3 = 6 · 0.7− 3 = 1.2

E[G | H1] = 4p− 1 = 4 · 0.7− 1 = 1.8

f. Assume that p = 0.7 and let’s say we want to change the game to make it “fair.”
If the flip is tails, then Tim pays a dollar to Joe—how much should Joe pay Tim
on Heads so that for any number of flips we know E[G] = 0?

Each E[Gi] is 0.3 · (−1) + 0.7 · x, where x is the number of dollars that Joe
should pay Tim on Heads. Thus, we have E[G] = (0.3 · (−1) + 0.7 · x) · 3 = 0.
Solving for x, we have x = 3

7
. So, Joe should pay Tim $0.43 on heads so that

the game is fair.

Task 2

Tim and Joe are now playing a similar, but different, game. This time they flip a
coin 2 times. Let X be the random variable that is equal to the number of heads
and Y the random variable that is equal to the number of tails. At the end of the
game, Joe pays Tim X2 dollars. Once again, let G be the random variable for Tim’s
gain.

a. Calculate E[X]2 when the probability of heads is p = 0.7.
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E[X] = 0.7 + 0.7 = 1.4. So, E[X]2 = 1.42 = 1.96

b. Calculate E[G] when p = 0.7.

E[G] = E[X2] = (0.7)2(4) +
(
2
1

)
(0.3)(0.7)(1) = 2.38

c. Does E[G] = E[X]2?

No!

In general for any random variable with nonzero variance we have E[X2] >
E[X])2.

d. Find an example that shows that E[XY ] = E[X]E[Y ] does not hold where X and
Y are not independent variables.

Hint: Try X and Y as defined above.

We know that X and Y , as defined in this problem, are not independent
variables. We know that E[X]E[Y ] = 1 · 1 = 1. We can also calculate E[XY ]
to be (1

4
)(2)(0) + (1

2
)(1)(1) = (1

4
)(0)(2) = 1

2
.

Thus, this is an example of where X and Y are dependent variables where
E[XY ] ̸= E[X]E[Y ].

e. Prove that if X and Y are two independent random variables, then E[XY ] =
E[X]E[Y ].

Assume X and Y are independent. So for any x and y in their range we have
Pr(X = x ∧ Y = y) = Pr(X = x) Pr(Y = y). We now use the definition of
expected value.

E[XY ] =
∑

x∈X(S)

∑
y∈Y (S)

xy Pr(X = x ∧ Y = y) (2)

=
∑

x∈X(S)

∑
y∈Y (S)

xy Pr(X = x) Pr(Y = y) (3)

=

 ∑
x∈X(S)

xPr(X = x)

 ∑
y∈Y (S)

y Pr(Y = y)

 (4)

= E[X]E[Y ] (5)
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Bayes’ Rule

Bayes’ Rule can be summarized as

Pr(A|B) =
Pr(B|A) Pr(A)

Pr(B)

where A and B are events and Pr(B) ̸= 0.

Task 3

Assume Brown’s CS department has an evaluation system for CS courses based on
student evaluations. In any class, the students can fill the evaluation form and give
a score of 0, 1, or 2 to the course. Let X be the random variable of this score. The
students of CS0220 either like the course with probability 3/4 (Event L) or they do
not like the course with probability 1/4 (Event ¬L).

Assume that the conditional probability distribution of X given L is

Pr(X = 0 | L) = 1/8

Pr(X = 1 | L) = 1/4

Pr(X = 2 | L) = 5/8

and given that they do not like the course (¬L) it is

Pr(X = 0 | ¬L) = 9/10

Pr(X = 1 | ¬L) = 1/10

Pr(X = 2 | ¬L) = 0.

a. If a student has given score of 0 to CS0220, what is the probability that they do
not like the course?

Pr(¬L | X = 0) = Pr(X=0|¬L) Pr(¬L)
Pr(X=0)

=
9
10

· 1
4

1
4
· 9
10

+ 3
4
· 1
8

= 12
17
. The formula for condi-

tional probability Pr(¬L | X = 0) = Pr(¬L∩X=0)
Pr(X=0)

gives the same answer.

Note: Drawing out a diagram like this may be helpful for this problem:
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b. Use the definition of conditional expected value (Equation 1) and find E[X | ¬L]

E[X | ¬L] =
∑

rPr(X = r | ¬L) = 2 · 0 + 1 · 1
10

+ 0 · 9
10

= 1
10
.

c. Optional: Find E[X].

E[X] =2Pr(X = 2) + 1Pr(X = 1) + 0Pr(X = 0)

=2 (Pr(X = 2 | L) Pr(L) + Pr(X = 2 | ¬L) Pr(¬L))
+ Pr(X = 1 | L) Pr(L) + (Pr(X = 1 | ¬L) Pr(¬L)

= 2 · 3
4
· 5
8
+ 1 · 3

4
· 1
4
+ 1 · 1

4
· 1

10
=

23

20
= 1.15.

Alternative solution: E[X] = Pr(L)E[X | L] + Pr(¬L)E[X | ¬L] = 3
4
· (5

8
· 2 +

1
4
· 1 + 1

8
· 0) + 1

4
· (0 · 2 + 1

10
· 1 + 9

10
· 0) = 23

20
= 1.15

Checkpoint #1 — Call over a TA!
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Variation from the mean

Sometimes measuring the mean (expectation) of a random variable doesn’t give us
enough information: it can be helpful to know how much we expect the variable to
stray from its average.

Markov’s inequality gives a generally coarse estimate of the probability that a random
variable takes a value much larger than its mean.

Theorem (Markov). If R is a nonnegative random variable, then for all x > 0,

Pr[R ≥ x] ≤ E[R]

x
.

Expressed differently:

Corollary. If R is a nonnegative random variable, then for all c ≥ 1,

Pr[R ≥ c · E[R]] ≤ 1

c
.

That is: the probability of R being more than c times its mean is at most 1/c.

A related notion is that of variance:

Definition. The variance Var[R] of a random variable R is defined to be E[(R −
E[R])2].

Unpacking this from the inside out: R − E[R] is a random variable measuring the
distance between R and its mean at each outcome. Averaging the square of this
gives us a sense of, overall, how far R tends to be from its mean.

There is an equivalent way to state this:

Lemma. For any random variable R,

Var[R] = E[R2]− (E[R])2.

Task 4

Prove the above lemma!

For notational convenience, we will define µ := E[R].

Var[R] = E[(R− µ)2]

= E[R2 − 2µR + µ2]

= E[R2]− 2µE[R] + µ2
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= E[R2]− 2µ2 + µ2

= E[R2]− µ2

= E[R2]− (E[R])2

Note that the third line follows by linearity of expectation, with E[µ2] = µ2 since
µ is a constant.

This leads us to state Chebyshev’s theorem, an application of Markov’s inequality:

Theorem (Chebyshev). Let R be a random variable and x ∈ R+. Then

Pr [|R− E [R]| ≥ x] ≤ Var[R]

x2
.

Task 5

Suppose you flip a fair coin 100 times. The coin flips are all mutually independent.

a. What is the expected number of heads?

Let X be the random variable denoting the number of heads.

E[X] = E[X1]+E[X2]+· · ·+E[X100] = (1 · 1
2
) + (1 · 1

2
) + · · · (1 · 1

2
)︸ ︷︷ ︸

100 times

= 100· 1
2
=

50

b. What upper bound on the probability that the number of heads is at least 70 can
we derive using Markov’s inequality?

Pr[X ≥ 70] ≤ E[X]
70

= 50
70

Using Markov’s inequality, we can derive a corresponding upper bound of
5
7
≈ 0.714.

c. What is the variance of the number of heads? The following theorem may help:

Theorem. Let X and Y be independent random variables. Then

Var[X + Y ] = Var[X] + Var[Y ].

(Note: This does not hold as a general property of variance!)

7



Given that all coin flips are mutually independent, we can say

Var[X] = Var[X1] + Var[X2] + · · ·Var[X100].

For Xi such that 1 ≤ i ≤ 100,

Var[Xi] = E[(Xi)
2]− (E[Xi])

2.

Calculating the terms independently, we get

E[(Xi)
2] = (1)2 · 1

2
+ (0)2 · 1

2
=

1

2

(E[Xi])
2 = (

1

2
)2 =

1

4

So

Var[Xi] =
1

2
− 1

4
=

1

4
.

Since this generally holds for the ith flip, we can conclude

Var[X] = Var[X1] + Var[X2] + · · ·Var[X100] =
1

4
+

1

4
+ · · · 1

4︸ ︷︷ ︸
100 times

= 25.

d. What upper bound does Chebyshev’s Theorem give us on the probability that the
number of heads is either less than 30 or greater than 70?

Pr[X > 70 ∪X < 30] = Pr[|X − E[X]| ≥ 20]

By Chebyshev’s Theorem, Pr[|X − E[X]| ≥ 20] ≤ 25
202

= 1
16
.

Thus, we are given an upper bound of 1
16

= 0.0625.

Task 6

A herd of dinosaurs is stricken by an outbreak of cold dino disease. The disease
lowers a dinosaur’s body temperature from normal levels, and a dino will die if its
temperature goes below 90 degrees F. The disease epidemic is so intense that it
lowered the average temperature of the herd to 85 degrees. Body temperatures as
low as 70 degrees, but no lower, were actually found in the herd.

a. Use Markov’s inequality to prove that at most 3/4 of the dinos could survive.
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Hint : This isn’t necessarily a direct result from applying Markov’s inequality
to the expected value itself. Think about how the bound can be expressed
differently – perhaps in relation to the minimum temperature.

Let random variable T denote a dinosaur’s body temperature in degrees F.

E[T ] is the average temperature of the herd, so E[T ] = 85

Applying Markov’s inequality to T , we get

Pr[T ≥ 90] ≤ E[T ]

90
=

85

90

.

But 85
90

= 17
18

> 3
4
, so this is not tight enough of a bound.

Instead, apply Markov’s inequality to T − 70:

Pr[T ≥ 90] = Pr[T − 70 ≥ 20] ≤ E[T − 70]

20
=

85− 70

20
=

15

20
=

3

4
.

b. Suppose there are 400 dinos in the herd. Show that the bound from part a is
the best possible by giving an example set of temperatures for the dinos so that
the average herd temperature is 85 and 3/4 of the dinos will have a high enough
temperature to survive.

Let 300 dinosaurs have a temperature of 90 degrees and the remaining 100
have a temperature of 70 degrees. The average temperature of the herd is
300·90+100·70

400
= 34000

400
= 85 degrees.

Checkoff — Call over a TA!
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